Investigation of an Idealized Virus Capsid Model by the Dynamic Elasticity Apparatus

The three-dimensional dynamic theory of elasticity is applied to investigate the mechanical properties of the virus capsid. An idealized model of viruses is based on the 3D boundary-value problem of mathematical physics formulated in a spherical coordinate system for the steady-state oscillation process. The virus is modeled by a hollow elastic sphere filled with an acoustic medium and located in a different acoustic medium. The stated boundary-value problem is solved with the help of the method of integral transforms and the method of the discontinuous solutions. As a result, the exact solution of the problem is obtained. The numerical calculations of the elastic characteristics of the virus are carried out.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. 1.

    N. D. Vaisfel’d and G. Ya. Popov, “Nonstationary dynamic problems of elastic stress concentration near a spherical imperfection,” Izv. Ros. Akad. Nauk, Mekh. Tverd. Tela, No. 3, 90–102 (2002); English translation:Mech. Solids, 37, No. 3, 77–88 (2002).

  2. 2.

    N. O. Horechko and R. M. Kushnir, “Thermostressed state of a composite plate with heat exchange under the action of a uniformly distributed heat source,” Mat. Met. Fiz.-Mekh. Polya, 54, No. 1, 153–162 (2011); English translation:J. Math. Sci., 183, No. 2, 177–189 (2012); https://doi.org/https://doi.org/10.1007/s10958-012-0805-4.

    MathSciNet  Article  Google Scholar 

  3. 3.

    V. T. Grinchenko and V. V. Meleshko, Harmonic Vibrations and Waves in Elastic Bodies [in Russian], Naukova Dumka, Kiev (1981).

    Google Scholar 

  4. 4.

    А. N. Guz’ and V. D. Kubenko, “Theory of Nonstationary Aerohydroelasticity of the Shells,” in: A. N. Guz’ (editor), Methods of Calculation of Shells [in Russian], Vol. 5, Naukova Dumka, Kiev (1982).

  5. 5.

    H. S. Kit and V. A. Halazyuk, “Axisymmetric stress-strain state of a body with thin rigid disk-shaped heat-resistant inclusion,” Mat. Met. Fiz.-Mekh. Polya, 56, No. 3, 95–109 (2013); English translation:J. Math. Sci., 205, No. 4, 602–620 (2015); https://doi.org/https://doi.org/10.1007/s10958-015-2269-9.

    MathSciNet  Article  Google Scholar 

  6. 6.

    A. L. Medvedskii, “Dynamics of an inhomogeneous transversely isotropic sphere in acoustic media,” Vestn. Mosk. Aviats. Inst., 17, No. 1, 181–186 (2010).

    Google Scholar 

  7. 7.

    Z. T. Nazarchuk, D. B. Kuryliak, M. V. Voytko, and Ya. P. Kulynych, “On the interaction of an elastic SH-wave with an interface crack in the perfectly rigid joint of a plate with a half space,” Mat. Met. Fiz.-Mekh. Polya, 55, No. 2, 107–118 (2012); English translation:J. Math. Sci., 192, No. 6, 609–622 (2013); https://doi.org/https://doi.org/10.1007/s10958-013-1420-8.

    MathSciNet  Article  Google Scholar 

  8. 8.

    V. V. Panasyuk and M. P. Savruk, “On the determination of stress concentration in a stretched plate with two holes,” Mat. Met. Fiz.- Mekh. Polya, 51, No. 2, 112–123 (2008); English translation:J. Math. Sci., 162, No. 1, 132–148 (2009); https://doi.org/https://doi.org/10.1007/s10958-009-9626-5.

    Article  Google Scholar 

  9. 9.

    A. F. Ulitko, “Stress state of a hollow sphere loaded by concentrated forces,” Prikl. Mekh, 4, No. 5, 38–45 (1968); English translation:Int. Soviet Appl. Mech., 4, No. 5, 25–29 (1968); https://doi.org/https://doi.org/10.1007/BF00886782.

    Article  Google Scholar 

  10. 10.

    M. V. Khai and M. D. Hrylyts’kyi, “Mathematical statement of boundary conditions for problems of three-dimensional deformation of plates,” Mat. Met. Fiz.-Mekh. Polya, 42, No. 1, 55–61 (1999); English translation:J. Math. Sci., 109, No. 1, 1221–1228 (2002); https://doi.org/https://doi.org/10.1023/A:1013744627572.

    Article  Google Scholar 

  11. 11.

    S. M. Hasheminejad and M. Maleki, “Acoustic resonance scattering from a submerged anisotropic sphere,” Akustich. Zh., 54, No. 2, 205–218 (2008); English translation:Acoust. Phys., 54, No. 2, 168–179 (2008); https://doi.org/https://doi.org/10.1134/S1063771008020048.

    Article  Google Scholar 

  12. 12.

    V. S. Chernina, Statics of Thin-Walled Shells of Revolution [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  13. 13.

    А. V. Sheptilevskiy, V. М. Коsenkov, and I. T. Selezov, “Three-dimensional model of a hydroelastic system bounded by a spherical shell,” Mat. Met. Fiz.-Mekh. Polya, 55, No. 1, 159–167 (2012); English translation:J. Math. Sci., 190, No. 6, 823–834 (2013); https://doi.org/https://doi.org/10.1007/s10958–013–1291-z.

  14. 14.

    S. R. Aglyamov, A. B. Karpiouk, Yu. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Motion of a solid sphere in a viscoelastic medium in response to applied acoustic radiation force: Theoretical analysis and experimental verification,” J. Acoust. Soc. Amer., 122, No. 4, 1927–1936 (2007); https://doi.org/https://doi.org/10.1121/1.2774754.

    Article  Google Scholar 

  15. 15.

    M. Buenemann and P. Lenz, “Elastic properties and mechanical stability of chiral and filled viral capsids,” Phys. Rev. E, 78, No. 5 (2008); https://doi.org/https://doi.org/10.1103/PhysRevE.78.051924.

  16. 16.

    M. Buenemann and P. Lenz, “Mechanical limits of viral capsids,” Proc. Nat. Acad. Sci. USA (PNAS), 104, No. 24, 9925–9930 (2007); https://doi.org/https://doi.org/10.1073/pnas.0611472104.

    Article  Google Scholar 

  17. 17.

    C. Carrasco, A. Carreira, I. A. T. Schaap, P. A. Serena, J. Gómez-Herrero, M. G. Mateu, and P. J. de Pablo, “DNA-mediated anisotropic mechanical reinforcement of a virus,” Proc. Nat. Acad. Sci. USA (PNAS), 103, No. 37, 13706–13711 (2006); https://doi.org/https://doi.org/10.1073/pnas.0601881103.

    Article  Google Scholar 

  18. 18.

    M. M. Gibbons and W. S. Klug, “Nonlinear finite-element analysis of nanoindentation of viral capsids,” Phys. Rev. E, 75, No. 3 (2007); https://doi.org/https://doi.org/10.1103/PhysRevE.75.031901.

  19. 19.

    G. M. Grason, “Perspective: Geometrically frustrated assemblies,” J. Chem. Phys., 145, 110901-1–110901-17 (2016); https://doi.org/https://doi.org/10.1063/1.4962629.

    Article  Google Scholar 

  20. 20.

    N. N. Kiselyova and G. Ch. Shushkevich, “Acoustic scattering by spherical shell and sphere,” in: Computer Algebra Systems in Teaching and Research: Mathematical Modeling in Physics, Civil Engineering, Economics, and Finance, Wyd. Collegium Mazovia, Siedlce, 91–99 (2011); https://elib.grsu.by/katalog/161816-348205.pdf.

  21. 21.

    I. Korotkin, D. Nerukh, E. Tarasova, V. Farafonov, and S. Karabasov, “Two-phase flow analogy as an effective boundary condition for modeling liquids at atomistic resolution,” J. Comput. Sci., 17, part 2, 446–456 (2016); https://doi.org/https://doi.org/10.1016/j.jocs.2016.03.012.

    MathSciNet  Article  Google Scholar 

  22. 22.

    J. Lidmar, L. Mirny, and D. R. Nelson, “Virus shapes and buckling transitions in spherical shells,” Phys. Rev. E, 68, No. 5 (2003); https://doi.org/https://doi.org/10.1103/PhysRevE.68.051910.

  23. 23.

    A. Markesteijn, S. Karabasov, A. Scukins, D. Nerukh, V. Glotov, and V. Goloviznin, “Concurrent multiscale modelling of atomistic and hydrodynamic processes in liquids,” Phil. Trans. R. Soc. A. Math. Phys. Eng. Sci., 372, No. 2021 (2014); https://doi:https://doi.org/10.1098/rsta.2013.0379.

    MathSciNet  Article  Google Scholar 

  24. 24.

    E. R. May and C. L. Brooks (3rd), “On the morphology of viral capsids: Elastic properties and buckling transitions,” J. Phys. Chem. B, 116, No. 29, 8604–8609 (2012); https://doi:https://doi.org/10.1021/jp300005g.

    Article  Google Scholar 

  25. 25.

    V. V. Mykhas’kiv, I. Ya. Zhbadynskyi, and Ch. Zhang, “Dynamic stresses due to time-harmonic elastic wave incidence on doubly periodic array of penny-shaped cracks,” Mat. Met. Fiz.-Mekh. Polya, 56, No. 2, 94–101 (2013); English translation:J. Math. Sci., 203, No. 1, 114–122 (2014); https://doi.org/https://doi.org/10.1007/s10958-014-2094-6.

    MathSciNet  Article  Google Scholar 

  26. 26.

    W. Nowacki, Teoria Sprężystości, PWN, Warszawa (1970).

    Google Scholar 

  27. 27.

    R. Phillips, M. Dittrich, and K. Schulten, “Quasicontinuum representations of atomic-scale mechanics: from proteins to dislocations,” Ann. Rev. Mater. Res., 32, 219–233 (2002); https://doi.org/https://doi.org/10.1146/annurev.matsci. 32.122001.102202.

  28. 28.

    G. Polles, G. Indelicato, R. Potestio, P. Cermelli, R. Twarock, and C. Micheletti, “Mechanical and assembly units of viral capsids identified via quasirigid domain decomposition,” PLOS Comput. Biol., 9, No. 11, e1003331 (2013); https://doi.org/https://doi.org/10.1371/journal.pcbi.1003331.

    Article  Google Scholar 

  29. 29.

    W. H. Roos, M. M. Gibbons, A. Arkhipov, C. Uetrecht, N. R. Watts, P. T. Wingfield, A. C. Steven, A. J. Heck, K. Schulten, W. S. Klug, and G. J. Wuite, “Squeezing protein shells: How continuum elastic models, molecular dynamics simulations, and experiments coalesce at the nanoscale,” Biophys. J., 99, No. 4, 1175–1181 (2010); https://doi.org/https://doi.org/10.1016/j.bpj.2010.05.033.

    Article  Google Scholar 

  30. 30.

    A. Scukins, D. Nerukh, E. Pavlov, S. Karabasov, and A. Markesteijn, “Multiscale molecular dynamics/hydrodynamics implementation of two dimensional “Mercedes Benz” water model,” Eur. Phys. J. Spec. Topics, 224, No. 12, 2217–2238 (2015); https://dx.doi.org/https://doi.org/10.1140/epjst/e2015-02409-8.

    Article  Google Scholar 

  31. 31.

    E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford Univ. Press, Oxford (1948).

    Google Scholar 

  32. 32.

    G. A. Vliegenthart and G. Gompper, “Mechanical deformation of spherical viruses with icosahedral symmetry,” Biophys. J., 91, No. 3, 834–841 (2006); https://doi.org/https://doi.org/10.1529/biophysj.106.081422.

    Article  Google Scholar 

  33. 33.

    J. H. Wu, A. Q. Liu, H. L. Chen, and T. N. Chen, “Multiple scattering of a spherical acoustic wave from fluid spheres,” J. Sound Vibrat., 290, No. 1–2, 17–33 (2006); https://doi.org/https://doi.org/10.1016/j.jsv.2005.03.015.

    Article  Google Scholar 

  34. 34.

    R. Zandi and D. Reguera, “Mechanical properties of viral capsids,” Phys. Rev. E, 72, No. 2 (2005); https://doi.org/https://doi.org/10.1103/PhysRevE.72.021917.

  35. 35.

    Z. Zhuravlova, D. Kozachkov, D. Pliusnov, V. Radzivil, V. Reut, O. Shpynarov, E. Tarasova, D. Nerukh, and N. Vaysfel’d, “Modeling of virus vibration with 3-D dynamic elasticity theory,” in: 23rd Internat. Conf. “Engineering Mechanics 2017”, 15–18 May, 2017, Svratka, Czech Republic, (2017), pp. 1126–1129.

  36. 36.

    M. Zink and H. Grubmüller, “Mechanical properties of the icosahedral shell of southern bean mosaic virus: A molecular dynamics study,” Biophys. J., 96, No. 4, 1350–1363 (2009); https://doi.org/https://doi.org/10.1016/j.bpj.2008.11.028.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Z. Zhuravlova.

Additional information

Published in Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 60, No. 2, pp. 92–104, April–June, 2017.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhuravlova, Z., Nerukh, D., Reut, V. et al. Investigation of an Idealized Virus Capsid Model by the Dynamic Elasticity Apparatus. J Math Sci 243, 111–127 (2019). https://doi.org/10.1007/s10958-019-04530-4

Download citation