Skip to main content
Log in

To the theory of semilinear equations in the plane

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In two dimensions, we present a new approach to the study of the semilinear equations of the form div[A(z)∇u] = f(u), the diffusion term of which is the divergence uniform elliptic operator with measurable matrix functions A(z), whereas its reaction term f(u) is a continuous non-linear function. Assuming that f(t)/t → 0 as t → ∞, we establish a theorem on existence of weak \( C\left(\overline{D}\right)\cap {W}_{\mathrm{loc}}^{1,2}(D) \) solutions of the Dirichlet problem with arbitrary continuous boundary data in any bounded domains D without degenerate boundary components. As consequences, we give applications to some concrete model semilinear equations of mathematical physics, arising from modeling processes in anisotropic and inhomogeneous media. With a view to the further development of the theory of boundary-value problems for the semilinear equations, we prove a theorem on the solvability of the Dirichlet problem for the Poisson equation in Jordan domains with arbitrary boundary data that are measurable with respect to the logarithmic capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, Toronto, 1966.

    MATH  Google Scholar 

  2. L. Ahlfors and A. Beurling, “The boundary correspondence under quasiconformal mappings,” Acta Math., 96, 125–142 (1956).

    MathSciNet  MATH  Google Scholar 

  3. R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Clarendon Press, Oxford, 1975.

    MATH  Google Scholar 

  4. K. Astala, T. Iwaniec, and G. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Univ. Press, Princeton, NJ, 2009.

    MATH  Google Scholar 

  5. G. I. Barenblatt, Ya. B. Zel’dovich, V. B. Librovich, and G. M. Mahviladze, The Mathematical Theory of Combustion and Explosions, Consult. Bureau, New York, 1985.

    Google Scholar 

  6. J. Becker and Ch. Pommerenke, “Hölder continuity of conformal mappings and nonquasiconformal Jordan curves,” Comment. Math. Helv., 57, No. 2, 221–225 (1982).

    MathSciNet  MATH  Google Scholar 

  7. E. Beltrami, “Saggio di interpretazione della geometria non euclidea,” Giornale di Math., 6, 284–312 (1868).

    MATH  Google Scholar 

  8. L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Wiley, New York, 1958.

    MATH  Google Scholar 

  9. L. Bers and L. Nirenberg, “On a representation theorem for linear elliptic systems with discontinuous coefficients and its applications,” in: Convegno Internazionale sulle Equazioni Lineari alle Derivate Parziali, Cremonese, Rome, 1955, pp. 111–140.

  10. L. Bieberbach, “ ∆u = e u und die automorphen Funktionen,” Math. Ann., 7, No. 7, 173–212 (1916).

    Google Scholar 

  11. B. V. Bojarski, “Homeomorphic solutions of Beltrami systems,” Dokl. Akad. Nauk SSSR, 102, 661–664 (1955).

    MathSciNet  Google Scholar 

  12. B. V. Bojarski, “Generalized solutions of a system of differential equations of the first order and elliptic type with discontinuous coefficients,” Mat. Sbornik, 43(85), 451–503 (1957); transl. in Report. University of Jyväskylä Department of Mathematics and Statistics, 118, University of Jyväskylä, Jyväskylä, 2009.

  13. B. Bojarski, V. Gutlyanskii, O. Martio, V. Ryazanov, Infinitesimal geometry of quasiconformal and bilipschitz mappings in the plane, EMS Tracts in Mathematics, 19, European Mathematical Society (EMS), Zurich, 2013.

  14. B. Bojarski, V. Gutlyanskii, and V. Ryazanov, “On the Beltrami equations with two characteristics,” Complex Var. Elliptic Equ., 54, No. 10, 935–950 (2009).

    MathSciNet  MATH  Google Scholar 

  15. B. Bojarski and T. Iwaniec, “Analytical foundations of the theory of quasiconformal mappings in ℝn,” Ann. Acad. Sci. Fenn. Ser. A I Math., 8, No. 2, 257–324 (1983).

    MathSciNet  MATH  Google Scholar 

  16. J. I. Diaz, Nonlinear Partial Differential Equations and Free Boundaries. Vol. I, Elliptic Equations, Pitman, Boston, 1985.

    Google Scholar 

  17. N. Dunford and J. T. Schwartz, Linear Operators. Vol. I, General Theory, Wiley-Interscience, New York, 1958.

  18. L. Carleson, Selected Problems on Exceptional Sets, Van Nostrand, Princeton, 1971.

    MATH  Google Scholar 

  19. A. S. Efimushkin and V. I. Ryazanov, “On the Riemann-Hilbert problem for the Beltrami equations in quasidisks,” J. Math. Sci., 211, No. 5, 646–659 (2015).

    MathSciNet  MATH  Google Scholar 

  20. H. Federer, Geometric Measure Theory, Springer, Berlin, 1969.

    MATH  Google Scholar 

  21. M. Fékete, “Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten,” Math. Z., 17, 228–249 (1923).

    MathSciNet  MATH  Google Scholar 

  22. J. B. Garnett and D. E. Marshall, Harmonic Measure, Cambridge Univ. Press, Cambridge, 2005.

    MATH  Google Scholar 

  23. F. W. Gehring and O. Martio, “Lipschitz classes and quasiconformal mappings,” Ann. Acad. Sci. Fenn. Ser. A I Math., 10, 203–219 (1985).

    MathSciNet  MATH  Google Scholar 

  24. F. W. Gehring and B. P. Palka, “Quasiconformally homogeneous domains,” J. Analyse Math., 30, 172–199 (1976).

    MathSciNet  MATH  Google Scholar 

  25. M. Giaquinta and L. Martinazzi, An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs, Edizioni della Normale, Pisa, 2012.

    MATH  Google Scholar 

  26. D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1983.

    MATH  Google Scholar 

  27. V. Gol’dshtein, V. Pchelintsev, and A. Ukhlov, Composition Operators on Sobolev spaces and Eigenvalues of Divergent Elliptic Operators, arXiv:1903.11301v1 [math.AP], March 27, 2019.

  28. V. Gol’dshtein and A. Ukhlov, “About homeomorphisms that induce composition operators on Sobolev spaces,” Complex Var. Elliptic Equ., 55, No. 8–10, 833–845 (2010).

    MathSciNet  MATH  Google Scholar 

  29. G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Amer. Math. Soc., Providence, RI, 1969.

    MATH  Google Scholar 

  30. A. K. Gushchin, “On the Dirichlet problem for a second-order elliptic equation,” Math. USSR-Sb., 65, No. 1, 19–66 (1990).

    MathSciNet  MATH  Google Scholar 

  31. V. Ya. Gutlyanskiĭ and O. Martio, “Conformality of a quasiconformal mapping at a point,” J. Anal. Math., 91, 179–192 (2003).

    MathSciNet  MATH  Google Scholar 

  32. V. Gutlyanskiĭ and O. Martio, “Rotation estimates and spirals,” Conform. Geom. Dyn., 5, 6–20 (2001).

    MathSciNet  MATH  Google Scholar 

  33. V. Ya. Gutlyanskii, O. V. Nesmelova, and V. I. Ryazanov, “On a model semilinear elliptic equation in the plane,” J. Math. Sci., 220, No. 5, 603–614 (2017).

    MATH  Google Scholar 

  34. V. Ya. Gutlyanskii, O. V. Nesmelova, and V. I. Ryazanov, “Semilinear equations in a plane and quasiconformal mappings,” Dopov. Nats. Akad. Nauk Ukr., No. 1, 10–16 (2017).

    MathSciNet  MATH  Google Scholar 

  35. V. Ya. Gutlyanskii, O. V. Nesmelova, V. I. Ryazanov, “On the Dirichlet problem for quasilinear Poisson equations,” Proceed. IAMM NASU, 31, 28–37 (2017).

    MATH  Google Scholar 

  36. V. Ya. Gutlyanskii, O. V. Nesmelova, and V. I. Ryazanov, “On quasiconformal maps and semilinear equations in the plane,” J. Math. Sci., 229, No. 1, 7–29 (2018).

    MATH  Google Scholar 

  37. V. Ya. Gutlyanskii, O. V. Nesmelova, and V. I. Ryazanov, “Semilinear equations in the plane with measurable data,” Dopov. Nats. Akad. Nauk Ukr., No. 2, 12–18 (2018).

    MathSciNet  MATH  Google Scholar 

  38. V. Ya. Gutlyanskii, O. V. Nesmelova, V. I. Ryazanov, “On blow-up solutions and dead zones in semilinear equations,” Dopov. Nats. Akad. Nauk Ukr., No. 4, 9–15 (2018).

    MathSciNet  MATH  Google Scholar 

  39. V. Ya. Gutlyanskii, O. V. Nesmelova, and V. I. Ryazanov, “On the regularity of solutions of quasilinear Poisson equations,” Dopov. Nats. Akad. Nauk Ukr., No. 10, 9–17 (2018).

    MathSciNet  MATH  Google Scholar 

  40. V. Ya. Gutlyanskii and V. I. Ryazanov, “Quasiconformal mappings in the theory of semilinear equations,” Lobachevskii J. Math., 39, No. 9, 1343–1352 (2018).

    MathSciNet  MATH  Google Scholar 

  41. V. Gutlyanskii, V. Ryazanov, U. Srebro, and E. Yakubov, “On recent advances in the Beltrami equations,” J. Math. Sci., 175, No. 4, 413–449 (2011).

    MathSciNet  MATH  Google Scholar 

  42. V. Gutlyanskii, V. Ryazanov, U. Srebro, E. Yakubov, The Beltrami equation. A geometric approach, Developments in Mathematics, 26, New York, Springer, 2012.

    MATH  Google Scholar 

  43. V. Gutlyanskii, V. Ryazanov, and E. Yakubov, “The Beltrami equations and prime ends,” J. Math. Sci., 210, No. 1, 22–51 (2015).

    MathSciNet  MATH  Google Scholar 

  44. V. Gutlyanskii, V. Ryazanov, and A. Yefimushkin, “On the boundary value problems for quasiconformal functions in the plane,” J. Math. Sci., 214, No. 2, 200–219 (2016).

    MATH  Google Scholar 

  45. L. Hörmander, Notions of Convexity, Birkhäuser, Boston, 1994.

    MATH  Google Scholar 

  46. L. Hörmander, The analysis of linear partial differential operators. V. I. Distribution theory and Fourier analysis, Springer, Berlin, 1983.

    MATH  Google Scholar 

  47. W. Hurewicz and H. Wallman, Dimension Theory, Princeton, Princeton Univ. Press, 1948.

    MATH  Google Scholar 

  48. A. A. Ignat’ev and V. I. Ryazanov, “Finite mean oscillation in mapping theory,” Ukr. Math. Bull., 2, No. 3, 403–424 (2005).

    MathSciNet  MATH  Google Scholar 

  49. P. Koosis, Introduction to H p Spaces, Cambridge Univ. Press, Cambridge, 1998.

    MATH  Google Scholar 

  50. K. Kuratowski, Topology. Vol. II, Academic Press, New York, 1968.

    Google Scholar 

  51. O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and Quasilinear Equations of Elliptic Type, Academic Press, New York, 1968.

    MATH  Google Scholar 

  52. N. S. Landkof, Foundations of Modern Potential Theory, Springer, New York, 1972.

    MATH  Google Scholar 

  53. M. Lavrentiev, “On some boundary problems in the theory of univalent functions,” Mat. Sbornik, 1(43), No. 6, 815–846 (1936).

  54. M. Lavrentiev, “Sur une critére differentiel des transformations homéomorphes des domains ´a trois dimensions,” Dokl. Acad. Nauk. SSSR, 20, 241–242 (1938).

    Google Scholar 

  55. O. Lehto and K. J. Virtanen, Quasiconformal Mappings in the Plane, Springer, Berlin, 1973.

    MATH  Google Scholar 

  56. J. Leray and Ju. Schauder, “Topologie et equations fonctionnelles,” Ann. Sci. Ecole Norm. Sup., 51, No. 3, 45–78 (1934).

    MATH  Google Scholar 

  57. O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in modern mapping theory, Springer Monographs in Mathematics, New York, Springer, 2009.

  58. M. Marcus and L. Veron, Nonlinear Second Order Elliptic Equations Involving Measures, De Gruyter, Berlin, 2014.

    MATH  Google Scholar 

  59. S. G. Mikhlin, Linear Partial Differential Equations [in Russian], Vyssh. Shkola, Moscow, 1977.

    Google Scholar 

  60. C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential quations,” Trans. Amer. Math. Soc., 43, 126–166 (1938).

    MathSciNet  MATH  Google Scholar 

  61. R. Nevanlinna, Eindeutige Analytische Funktionen, Springer, Berlin, 1974.

    MATH  Google Scholar 

  62. S. I. Pokhozhaev, “On an equation of combustion theory,” Math. Notes, 88, Nos. 1–2, 48–56 (2010).

    MathSciNet  MATH  Google Scholar 

  63. I. I. Priwalow, Randeigenschaften Analytischer Funktionen, Berlin, Wissenschaften, 1956.

    Google Scholar 

  64. T. Ransford, Potential Theory in the Complex Plane, Cambridge Univ. Press, Cambridge, 1995.

    MATH  Google Scholar 

  65. W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1987.

    MATH  Google Scholar 

  66. V. Ryazanov, “The Stieltjes integrals in the theory of harmonic functions,” in: Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklova, 467, 151–168 (2018), ftp.pdmi.ras.ru/pub/publicat/znsl/v467/p151.pdf.

  67. S. Saks, Theory of the Integral, Dover, New York, 1964.

    MATH  Google Scholar 

  68. J. Serrin, “Local behaviour of solutions of quasilinear equations,” Acta Math., 111, 247–302 (1964).

    MathSciNet  MATH  Google Scholar 

  69. S. L. Sobolev,Some Applications of Functional Analysis in Mathematical Physics, AMS, Providence, RI, 1991.

    MATH  Google Scholar 

  70. A. Ukhlov, “Mappings generating the embeddings of Sobolev spaces,” Sib. Mat. Zh., 34, No. 1, 165–171 (1993).

    MATH  Google Scholar 

  71. I. N. Vekua, Generalized Analytic Functions, Addison-Wesley, Reading, Mass., 1962.

    MATH  Google Scholar 

  72. I. N. Vekua, “Some properties of solutions of Gauss equation,” Trudy Mat. Inst. Steklov, 64, 5–8 (1961).

    MathSciNet  Google Scholar 

  73. L. Véron, Local and Global Aspects of Quasilinear Degenerate Elliptic Equations, World Scientific, Singapore, 2017.

    MATH  Google Scholar 

  74. S. K. Vodopyanov and A. Ukhlov, “Sobolev spaces and (P; Q)-quasiconformal mappings of Carnot groups,” Sibir. Mat. Zh., 39, No. 4, 665–682 (1998).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Gutlyanskiĭ.

Additional information

Dedicated to the memory of Professor Bogdan Bojarski

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 16, No. 1, pp. 105–140 January–March, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutlyanskiĭ, V., Nesmelova, O. & Ryazanov, V. To the theory of semilinear equations in the plane. J Math Sci 242, 833–859 (2019). https://doi.org/10.1007/s10958-019-04519-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-019-04519-z

Keywords

Navigation