Skip to main content
Log in

Some properties of quasisymmetries in metric spaces

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Let (X, d, μ) and (Y, d′, μ′) be metric spaces α-regular by Ahlfors with α > 0 and locally finite Borel measures μ and μ′, respectively. We consider the class ACSE of absolutely continuous functions on a.a. compact subsets EX and establish the membership of mappings f: XY to a given class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Ahlfors and A. Beurling, “The boundary correspondence under quasiconformal mappings,” Acta Math., 96, 125–142 (1956).

    Article  MathSciNet  Google Scholar 

  2. V. V. Aseev and D. G. Kuzin, “Sufficient conditions of the quasisymmetry of mappings of a straight line and a plane,” Sibir. Mat. Zh., 39, No. 6, 1225–1235 (1998).

    MATH  Google Scholar 

  3. K. Astala, T. Iwaniec, and G. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Univ. Press, Princeton (2009).

  4. C. J. Bishop, H. Hakobyan, and M. Williams, “Quasisymmetric dimension distortion of Ahlfors regular subsets of a metric space,” Geom. Funct. Anal., 26, No. 2, 379–421 (2016).

    Article  MathSciNet  Google Scholar 

  5. M. Bonk, “Quasiconformal geometry of fractals,” in: Proceedings of the International Congress of Mathematicians, Vol. II, Eur. Math. Soc., Zurich, 2006, pp. 1349–1373.

  6. H. Federer, Geometric Measure Theory, Springer, New York, 1969.

    MATH  Google Scholar 

  7. B. Fuglede, “Extremal length and functional completion,” Acta Math., 98, 171–219 (1957).

    Article  MathSciNet  Google Scholar 

  8. J. Heinonen, Lectures on Analysis on Metric Spaces, Springer, New York, 2001.

  9. J. Heinonen and P. Koskela, “Quasiconformal maps on metric spaces with controlled geometry,” Acta Math., 181, 1–61 (1998).

    Article  MathSciNet  Google Scholar 

  10. W. Hurewicz and H. Wallman, Dimension Theory, Princeton Univ. Press, Princeton, 1948.

    MATH  Google Scholar 

  11. J. A. Kelingos, “Boundary correspondence under quasiconformal mappings,” Michigan Math. J., 13, 235–249 (1966).

    Article  MathSciNet  Google Scholar 

  12. P. Koskela and K. Wildrick, “Analytic properties of quasiconformal mappings between metric spaces,” in: Xianzhe Dai and Xiaochun Rong (Eds.), Metric and Differential Geometry. The Jeff Cheeger Anniversary Volume, Birkhäuser, Basel, 2012, pp. 163–174.

    Chapter  Google Scholar 

  13. O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, Springer, Berlin, 1973.

    Book  Google Scholar 

  14. N. N. Luzin, “Integral and Trigonometric Series,” Matem. Sb., 30, No. 1, 1–242 (1916).

    MATH  Google Scholar 

  15. V. Maz’ya, Sobolev Spaces, Springer, Berlin, 1985.

  16. S. G. Mikhlin, Linear Equations in Partial Derivatives [in Russian], Vysshaya Shkola, Moscow, 1977.

  17. H. Renggli, “On triangular dilatation,” in: Proceedings of the Romanian — Finnish Seminar on Teichmuller Spaces and Quasiconformal Mappings, Publ. House of the Academy of Sciences of the Soc. Rep. Romania, Bucharest, 1971, pp. 255–259.

  18. S. Saks, Theory of the Integral, Dover, New York, 1964.

  19. P. Tukia and J. Väisälä, “Quasisymmetric embeddings of metric spaces,” Ann. Acad. Sci. Fenn. Ser. A. I. Math., 5, 97–114 (1980).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena S. Afanas’eva.

Additional information

The article is dedicated to the memory of Professor Bogdan Bojarski

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 16, No. 1, pp. 2–9 January–March, 2019.

The present work was supported by the Nationa; Academy of Sciences of Ukraine in the frame of the scientific research project for young scientists “Geometric properties of metric spaces and mappings in Finsler spaces”. The authors are grateful also to Doctor of Phys.-Math. Sci. V. I. Ryazanov for the useful discussions and remarks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afanas’eva, E.S., Bilet, V.V. Some properties of quasisymmetries in metric spaces. J Math Sci 242, 754–759 (2019). https://doi.org/10.1007/s10958-019-04513-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-019-04513-5

Keywords

Navigation