R. Liouville, “Sur les invariants de certaines équations différentielles et sur leurs applications,” J. École Polytechnique, 59, 7–76 (1889).
MATH
Google Scholar
A. Tresse, “Sur les invariants différentiels des groupes continus de transformations,” Acta Math., 18, 1–88 (1894).
MathSciNet
Article
Google Scholar
E. Cartan, “Sur les variétés à connexion projective,” Bull. Soc. Math. France, 52, 205–241 (1924).
MathSciNet
Article
Google Scholar
S. Lie, “Klassifikation und Integration von gewöhnlichen Differentialgleichungen zwischen x, y, die eine Gruppe von Transformationen gestatten. III,” Arch. Mat. Naturvidensk., 8, 371–458 (1883).
MATH
Google Scholar
E. L. Ince, Ordinary Differential Equations, Longmans, Green & Co, London (1926).
N. Kamran, K. G. Lamb, and W. F. Shadwick, “The local equivalence problem for y′′ = F(x, y, y′) and the Painlevé transcendents,” J. Differential Geom., 22, 139–150 (1985).
MathSciNet
Article
Google Scholar
A. V. Bocharov, V. V. Sokolov, and S. I. Svinolupov, “On some equivalence problems for differential equations,” Preprint ESI-54, International Erwin Schrödinger Institute for Mathematical Physics, Vienna (1993).
J. Hietarinta and V. Dryuma, “Is my ODE a Painlevé equation in disguise?” J. Nonlinear Math. Phys., 9, Suppl. 1, 67–74 (2002).
MathSciNet
Article
Google Scholar
R. Dridi, “On the geometry of the first and second Painlevé equations,” J. Phys. A, 42, 125201 (2009).
MathSciNet
Article
Google Scholar
V. V. Kartak, “Point classification of second order ODEs and its application to Painlevé equations,” J. Nonlinear Math. Phys., 20, Suppl. 1, 110–129 (2013).
MathSciNet
Article
Google Scholar
Yu. Yu. Bagderina, “Invariants of a family of scalar second-order ordinary differential equations,” J. Phys. A, 46, 295201 (2013).
MathSciNet
Article
Google Scholar
V. V. Kartak, “‘Painlevé 34’ equation: equivalence test,” Commun. Nonlinear. Sci. Numer. Simul., 19, No. 9, 2993–3000 (2014).
MathSciNet
Article
Google Scholar
Yu. Yu. Bagderina, “Equivalence of second-order ODEs to equations of first Painlevé equation type,” Ufa Math. J., 7, 19–30 (2015).
MathSciNet
Article
Google Scholar
Yu. Yu. Bagderina and N. N. Tarkhanov, “Solution of the equivalence problem for the third Painlevé equation,” J. Math. Phys., 56, 013507 (2015).
MathSciNet
Article
Google Scholar
Yu. Yu. Bagderina, “Equivalence of second-order ordinary differential equations to Painlevé equations,” Theoret. Math. Phys., 182, No. 2, 211–230 (2015).
MathSciNet
Article
Google Scholar
R. Fuchs, “Sur quelques équations différentielles linéaires du second ordre,” C. R. Acad. Sci. Paris, 141, 555–558 (1905).
MATH
Google Scholar
B. Gambier, “Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est à points critiques fixes,” Acta Math., 33, 1–55 (1910).
MathSciNet
Article
Google Scholar
M. Jimbo and T. Miwa, “Studies of holonomic quantum fields. XVII,” Proc. Japan Acad. Ser. A, 56, 405–410 (1980).
MathSciNet
Article
Google Scholar
P. J. Forrester and N. S. Witte, “Application of the τ -function theory of Painlevé equations to random matrices: PVI, the JUE, CyUE, cJUE and scaled limits,” Nagoya Math. J., 174, 29–114 (2014).
Article
Google Scholar
H. Sakai, “Rational surfaces associated with affine root systems and geometry of the Painlevé equations,” Comm. Math. Phys., 220, 165–220 (2001).
MathSciNet
Article
Google Scholar
A. S. Fokas, R. A. Leo, L. Martina, and G. Soliani, “The scaling reduction of the three-wave resonant system and the Painlevé VI equation,” Phys. Lett. A, 115, 329–332 (1986).
MathSciNet
Article
Google Scholar
A. V. Kitaev, “On similarity reductions of the three-wave resonant system to the Painlevé equations,” J. Phys. A, 23, 3543–3553 (1990).
MathSciNet
Article
Google Scholar
L. J. Mason and N. M. Woodhouse, “Self-duality and the Painlevé transcendents,” Nonlinearity, 6, 569–581 (1993).
MathSciNet
Article
Google Scholar