Skip to main content
Log in

Monogenic Functions in Commutative Algebras Associated with Classical Equations of Mathematical Physics

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The methods involving the functions analytic in a complex plane for plane potential fields inspire the search for the analogous efficient methods for solving the spatial and multidimensional problems of mathematical physics. Many such methods are based on the mappings of hypercomplex algebras. The essence of the algebraic-analytic approach to elliptic equations of mathematical physics consists in the finding of a commutative Banach algebra such that the differentiable functions with values in this algebra have components satisfying the given equation with partial derivatives. The use of differentiable functions given in commutative Banach algebras combines the preservation of basic properties of analytic functions of a complex variable for the mentioned differentiable functions and the convenience and the simplicity of construction of solutions of PDEs. The paper contains the review of results reflecting the formation and the development of the mentioned approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. A. v. Beckh-Widmanstetter, “Läßt sich die eigenschaft der analytischen funktionen einer gemeinen komplexen veränderlichen, potentiale als bestandteile zu liefern, auf zahlsysteme mit drei einheiten verallgemeinern?,” Monatsh. Math. Physik, 23, 257–260 (1912).

    Article  MathSciNet  Google Scholar 

  2. E. K. Blum, “A theory of analytic functions in Banach algebras,” Trans. Amer. Math. Soc., 78, 343–370 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Boccaletti, F. Catoni, R. Cannatay, V. Catoniz, E. Nichelattix, and P. Zampetti, The Mathematics of Minkowski Space-Time and an Introduction to Commutative Hypercomplex Numbers, Springer, Berlin, 2006.

    Google Scholar 

  4. E. Cartan, “Les groupes bilinéares et les systèmes de nombres complexes,” Ann. Faculté Sci. Toulouse, 12, No. 1, 1–64 (1898).

    Article  MathSciNet  Google Scholar 

  5. F. Colombo, I. Sabadini, and D. C. Struppa, Noncommutative Functional Calculus: Theory and Applications of Slice Hyperholomorphic Functions, Birkhäuser, Basel, 2011.

  6. A. Douglis, “A function-theoretic approach to elliptic systems of equations in two variables,” Comm. Pure Appl. Math., 6, No. 2, 259–289 (1953).

  7. R. Fueter, “Die funktionentheorie der differentialgleichungen ∆u = 0 und ∆∆u = 0 mit vier reellen variablen,” Comm. Math. Helv., 7, 307–330 (1935).

    Article  MathSciNet  MATH  Google Scholar 

  8. S. V. Gryshchuk, “𝔹-valued monogenic functions and their applications to boundary-value problems in displacements of 2-D elasticity,” in: Analytic Methods of Analysis and Differential Equations, Cambridge Sci. Publ., Cottenham, 2016, pp. 37–47.

  9. S. V. Gryshchuk, “One-dimensionality of the kernel of the system of Fredholm integral equations for a homogeneous biharmonic problem,” Zb. Pr. Inst. Mat. NAN Ukr., 14, No. 1, 128–139 (2017).

    MathSciNet  MATH  Google Scholar 

  10. S. V. Gryshchuk, “Commutative complex algebras of the second rank with unity and some cases of plane orthotropy. I, II,” Ukr. Mat. Zh., 70, No. 8, 1058–1071; No. 10, 1382—1389 (2018).

  11. S. V. Grishchuk and S. A. Plaksa, “Integral representations of generalazid axially symmetric potentials in a simply connected domain,” Ukr. Math. J., 61, No. 2, 195–213 (2009).

    Article  MATH  Google Scholar 

  12. S. V. Grishchuk and S. A. Plaksa, “Monogenic functions in a biharmonic algebra,” Ukr. Math. J., 61, No. 12, 1865–1876 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  13. S. V. Gryshchuk and S. A. Plaksa, “On the logarithmic residues of monogenic functions of biharmonic variable,” Zb. Pr. Inst. Mat. NAN Ukr., 7, No. 2, 227–234 (2010).

    Google Scholar 

  14. S. V. Gryshchuk and S. A. Plaksa, “Basic properties of monogenic functions in a biharmonic plane,” Complex Analysis and Dynamical Systems V, 591, Amer. Math. Soc., Providence, RI, 2013, pp. 127–134.

  15. S. V. Gryshchuk and S. A. Plaksa, “Schwarz-type integrals in a biharmonic plane,” Intern. J. Pure Appl. Math., 83, No. 1, 193–211 (2013).

    Article  MATH  Google Scholar 

  16. S. V. Gryshchuk and S. A. Plaksa, “Monogenic functions in the biharmonic boundary value problem,” Math. Meth. Appl. Sci., 39, No. 11, 2939–2952 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  17. S. V. Gryshchuk and S. A. Plaksa, “A Schwartz-type boundary–value problem in a biharmonic plane,” Lobachevskii J. Math., 38, No. 3, 435-–442 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  18. S. V. Gryshchuk and S. A. Plaksa, “Reduction of a Schwartz-type boundary–value problem for biharmonic monogenic functions to Fredholm integral equations,” Open Math., 15, No. 1, 374-–381 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  19. S. V. Gryshchuk and S. A. Plaksa, “Schwartz-type boundary value problems for monogenic functions in a biharmonic algebra,” in: Analysis as a Life, Birkhäuser, Cham, 2019, pp. 193–211.

  20. K. Gürlebeck and W. Sprössig, Quaternionic and Clifford Calculus for Physicists and Engineers, Wiley, New York, 1997.

    MATH  Google Scholar 

  21. E. Goursat, Cours d’Analyse Mathematique, 2, Gauthier–Villars, Paris, 1910.

    MATH  Google Scholar 

  22. W. Hamilton, Elements of Quaternions, Univ. of Dublin Press, Dublin, 1866.

    Google Scholar 

  23. P. Henrici, “On the domain of regularity of generalized axially symmetric potentials,” Proc. Amer. Math. Soc., 8, No. 1, 29–31 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  24. O. F. Herus, “On the Cauchy theorem for hyperholomorphic functions of spatial variable,” J. Math. Sci., 229, No. 1, 1–6 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  25. E. Hille and R. S. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc., Providence, RI, 1957.

    MATH  Google Scholar 

  26. P. W. Ketchum, “Analytic functions of hypercomplex variables,” Trans. Amer. Math. Soc., 30, 641–667 (1928).

    Article  MathSciNet  MATH  Google Scholar 

  27. P. W. Ketchum, “A complete solution of Laplace’s equation by an infinite hypervariable,” Amer. J. Math., 51, 179–188 (1929).

    Article  MathSciNet  MATH  Google Scholar 

  28. V. V. Kisil, “Erlangen programme at large: an overview,” in: Advances in Applied Analysis, Springer, Basel, 2012, pp. 1–94.

  29. V. F. Kovalev, Biharmonic Schwarz Problem [in Russian], preprint 86.16, Inst. of Math. of NASU, Kiev, 1986.

  30. V. F. Kovalev and I. P. Mel’nichenko, “Biharmonic functions on biharmonic plane,” Dop. AN Ukr. Ser. A, No. 8 , 25–27 (1981).

  31. V. F. Kovalev and I. P. Mel’nichenko, Algebras of Functional-Invariant Solutions of the p-Biharmonic Equation [in Russian], Preprint 91.10, Inst. of Math. of NASU, Kiev, 1991.

  32. V. V. Kravchenko and M. V. Shapiro, Integral Representations for Spatial Models of Mathematical Physics, Addison-Wesley Longman, London, 1996.

    MATH  Google Scholar 

  33. Yu. P. Krivenkov, “Representation of solutions of the Euler–Poisson–Darboux equation via analytic functions,” Dokl. Akad. Nauk SSSR, 116, No. 4, 545–548 (1957).

    MathSciNet  MATH  Google Scholar 

  34. K. S. Kunz, “Application of an algebraic technique to the solution of Laplace’s equation in three dimensions,” SIAM J. Appl. Math., 21, No. 3, 425–441 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  35. T. S. Kuzmenko and V. S. Shpakivskyi, “Generalized integral theorems for the quaternionic G-monogenic mappings,” J. Math. Sci., 224, No. 4, 530–540 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  36. H. Leutwiler, “Modified quaternionic analysis in ℝ3,” Compl. Var. Theory Appl., 20, 19–51 (1992).

    MathSciNet  MATH  Google Scholar 

  37. E. R. Lorch, “The theory of analytic function in normed abelin vector rings,” Trans. Amer. Math. Soc., 54, 414–425 (1943).

    Article  MathSciNet  MATH  Google Scholar 

  38. M. E. Luna-Elizarrarás, M. Shapiro, D. C. Struppa, and A. Vajiac, Bicomplex Holomorphic Functions: the Algebra, Geometry and Analysis of Bicomplex Numbers, Birkhäuser, Basel, 2015.

    Book  MATH  Google Scholar 

  39. A. G. Mackie, “Contour integral solutions of a class of differential equations,” J. Ration. Mech. Anal., 4, No. 5, 733–750 (1955).

    MathSciNet  MATH  Google Scholar 

  40. I. P. Mel’nichenko, “The representation of harmonic mappings by monogenic functions,” Ukr. Math. J., 27, No. 5, 499–505 (1975).

    Article  MathSciNet  Google Scholar 

  41. I. P. Mel’nichenko, “Biharmonic bases in algebras of the second rank,” Ukr. Math. J., 38, No. 2, 224–226 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  42. I. P. Mel’nichenko, “Algebras of functionally invariant solutions of the three-dimensional Laplace equation,” Ukr. Math. J., 55, No. 9, 1551–1557 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  43. I. P. Mel’nichenko and S. A. Plaksa, “Potential fields with axial symmetry and algebras of monogenic functions of vector variable. I, II, III,” Ukr. Math. J., 49 (1996), No. 11, 1717–1730; No. 12, 1916–1926 (1996); 49, No. 2, 253–268 (1997).

  44. I. P. Mel’nichenko and S. A. Plaksa, “Outer boundary problems for the Stokes flow function and steady streamline along axial-symmetric bodies,” in: Complex Analysis and Potential Theory, Inst. of Math. of the NAS of Ukraine, 2003, pp. 82–91.

  45. I. P. Mel’nichenko and S. A. Plaksa, Commutative Algebras and Spatial Potential Fields [in Russian], Inst. of Math. of the NAS of Ukraine, Kiev, 2008.

    Google Scholar 

  46. S. G. Mikhlin, The Plane Problem of the Theory of Elasticity [in Russian], No. 65, Inst. of Seismology of the AS USSR, Moscow–Leningrad, 1935.

  47. G. C. Moisil and N. Theodoresco, “Functions holomorphes dans l’espace,” Mathematica (Cluj), 5, 142–159 (1931).

    MATH  Google Scholar 

  48. N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Leiden, 1977.

    Book  Google Scholar 

  49. B. Peirce, “Linear associative algebra,” Amer. J. Math., 7, No. 1, 97–229 (1881).

    Article  MathSciNet  MATH  Google Scholar 

  50. S. A. Plaksa, “On integral representations of an axisymmetric potential and the Stokes flow function in domains of the meridian plane. I, II,” Ukr. Math. J., 53, No. 5, 726–743; No. 6, 938–950 (2001).

  51. S. A. Plaksa, “Dirichlet problem for an axisymmetric potential in a simply connected domain of the meridian plane,” Ukr. Math. J., 53, No. 12, 1976–1997 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  52. S. A. Plaksa, “On an outer Dirichlet problem solving for the axial-symmetric potential,” Ukr. Math. J., 54, No. 12, 1634–1641 (2002).

    Article  MathSciNet  Google Scholar 

  53. S. A. Plaksa, “Dirichlet problem for the Stokes flow function in a simply connected domain of the meridian plane,” Ukr. Math. J., 55, No. 2, 197–231 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  54. S. Plaksa, “Singular and Fredholm integral equations for Dirichlet boundary problems for axial-symmetric potential fields,” in: Factorization, Singular Operators and Related Problems, Kluwer, Dordrecht, 2003, pp. 219–235.

  55. S. A. Plaksa, “Commutative algebras associated with classic equations of mathematical physics,” in: Advances in Applied Analysis, Springer, Berlin, 2012, pp. 177–223.

  56. S. A. Plaksa, “Integral theorems for monogenic functions in an infinite-dimensional space with a commutative multiplication,” Zb. Pr. Inst. Mat. NAN Ukr., 10, Nos. 4–5, 306–319 (2013).

    MATH  Google Scholar 

  57. S. A. Plaksa, “On differentiable and monogenic functions in a harmonic algebra,” Zb. Pr. Inst. Mat. NAN Ukr., 14, No. 1, 210–221 (2017).

    MATH  Google Scholar 

  58. S. A. Plaksa, “Axial-symmetric potential flows,” in: Models and Theories in Social Systems, Springer, Berlin, 2019, pp. 165–195.

  59. S. A. Plaksa, S. V. Gryshchuk, and V. S. Shpakivskyi, “Commutative algebras of monogenic functions associated with classic equations of mathematical physics,” in: Complex Analysis and Dynamical Systems, Amer. Math. Soc., Providence, RI, 2011, pp. 245–258.

  60. S. A. Plaksa and R. P. Pukhtaievych, “Constructive description of monogenic functions in a threedimensional harmonic algebra with one-dimensional radical,” Ukr. Math. J., 65, No. 5, 740–751 (2013).

    Article  MATH  Google Scholar 

  61. S. Plaksa and R. Pukhtaievych, “Monogenic functions in three-dimensional harmonic commutative algebras,” in: Complex Analysis and Potential Theory with Applications, Cambridge Sci. Publ., Cambridge, 2014, pp. 147–155.

  62. S. A. Plaksa and R. P. Pukhtaievych, “Monogenic functions in a finite-dimensional semi-simple commutative algebra,” An. St. Univ. Ovidius Constanta, 22, No. 1, 221–235 (2014).

    MathSciNet  MATH  Google Scholar 

  63. S. A. Plaksa and V. S. Shpakivskyi, “Limiting values of the Cauchy type integral in a three-dimensional harmonic algebra,” Eurasian Math. J., 3, No. 2, 120–128 (2012).

    MathSciNet  MATH  Google Scholar 

  64. S. A. Plaksa and V. S. Shpakivskyi, “On limiting values of Cauchy type integral in a harmonic algebra with two-dimensional radical,” Ann. Univ. M. Curie-Sklodowska. Sec. A, 67, No. 1, 57–64 (2013).

    MathSciNet  MATH  Google Scholar 

  65. S. A. Plaksa and V. S. Shpakivskyi, “Monogenic functions in a finite-dimensional algebra with unit and radical of maximal dimensionality,” J. Alger. Math. Soc., 1, No. 1, 1–13 (2014).

    Google Scholar 

  66. S. A. Plaksa and V. S. Shpakivskyi, “A description of spatial potential fields by means of monogenic functions in infinite-dimensional spaces with a commutative multiplication,” Bull. Soc. Sci. Lett. Lódź, Ser. Rech. Déform., 62, No. 2, 55–65 (2012).

    MathSciNet  MATH  Google Scholar 

  67. S. A. Plaksa and V. S. Shpakivskyi, “Cauchy theorem for a surface integral in commutative algebras,” Complex Var. Ellipt. Equ., 59, No. 1, 110–119 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  68. S. A. Plaksa and V. S. Shpakivskyi, “An extension of monogenic functions and spatial potentials,” Lobachevskii J. Math., 38, No. 2, 330–337 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  69. S. A. Plaksa and V. S. Shpakivskyi, “Integral theorems for monogenic functions in an infinite-dimensional space with a commutative multiplication,” Bull. Soc. Sci. Lett. Lódź, Ser. Rech. Déform., 68, No. 2, 25–36 (2018).

    Google Scholar 

  70. S. A. Plaksa and V. S. Shpakovskii, “Constructive description of monogenic functions in a harmonic algebra of the third rank,” Ukr. Math. J., 62, No. 8, 1251–1266 (2011).

    Article  MathSciNet  Google Scholar 

  71. S.A. Plaksa and V.S. Shpakovskii, “On the logarithmic residues of monogenic functions in a threedimensional harmonic algebra with two-dimensional radical,” Ukr. Math. J., 65, No. 7, 1079–1086 (2013).

    Article  MATH  Google Scholar 

  72. A. Pogorui, R. M. Rodriguez-Dagnino, and M. Shapiro, “Solutions for PDEs with constant coefficients and derivability of functions ranged in commutative algebras,” Math. Meth. Appl. Sci., 37(17), 2799–2810 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  73. G. N. Polozhii, Theory and Application of p-Analytic and (p, q)-Analytic Functions [in Russian], Naukova Dumka, Kiev, 1973.

  74. G. B. Price, An Introduction to Multicomplex Spaces and Functions, Marcel Dekker, New York, 1991.

    MATH  Google Scholar 

  75. R. P. Pukhtaievych, “Power series and Laurent series in three-dimensional harmonic algebra with a onedimensional radical,” Zb. Pr. Inst. Mat. NAN Ukr., 9, No. 2, 311–326 (2012).

    Google Scholar 

  76. R. P. Pukhtaievych, “Monogenic functions in a three-dimensional harmonic semi-simple algebra,” Zb. Pr. Inst. Mat. NAN Ukr., 10, Nos. 4–5, 352–361 (2013).

    MATH  Google Scholar 

  77. R. Pukhtaievych and S. Plaksa, “On logarithmic residue of monogenic functions in a three-dimensional commutative algebra with one-dimensional radical,” An. St. Ovidius Constanta, 25, No. 3, 167–182 (2017).

    MathSciNet  MATH  Google Scholar 

  78. F. Ringleb, “Beiträge zur funktionentheorie in hyperkomplexen systemen,” Rend. Circ. Mat. Palermo, 57, 311–340 (1933).

    Article  MATH  Google Scholar 

  79. M. N. Roşculet¸, “Algebre infinite associate la ecuatįi cu derivate partįale, omogene, cu coeficientį constantį de ordin oarecare,” Studii şi Cercetări Matem., 6, Nos. 3–4, 567–643 (1955).

    Google Scholar 

  80. J. Ryan, “Dirac operators, conformal transformations and aspects of classical harmonic analysis,” J. of Lie Theory, 8, 67–82 (1998).

    MathSciNet  MATH  Google Scholar 

  81. G. Scheffers, “Verallgemeinerung der grundlagen der gewöhnlich complexen fuktionen, I, II,” Ber. Verh. Sachs. Akad. Wiss. Leipzig Mat.-Phys. Kl., 45, 828-–848 (1893); 46, 120-–134 (1894).

  82. C. Segre, “The real representations of complex elements and extentions to bicomlex systems,” Math. Ann., 40 (1892), 413–467.

  83. V. S. Shpakivskyi, “Power and Laurent series in a three-dimensional harmonic algebra,” Zb. Pr. Inst. Mat. NAN Ukr., 7, No. 2, 314—321 (2010).

    MathSciNet  Google Scholar 

  84. V. S. Shpakivskyi, “Monogenic functions in finite-dimensional commutative associative algebras,” Zb. Pr. Inst. Mat. NAN Ukr., 12, No. 3, 251–268 (2015).

    MathSciNet  MATH  Google Scholar 

  85. V. Shpakivskyi, “Constructive description of monogenic functions in a finite-dimensional commutative associative algebra,” Adv. Pure Appl. Math., 7, No. 1, 63—75 (2016).

    MathSciNet  MATH  Google Scholar 

  86. V. S. Shpakivskyi, “Curvilinear integral theorems for monogenic functions in commutative associative algebras,” Adv. Appl. Clifford Alg., 26, 417–434 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  87. V. S. Shpakivskyi, “Hypercomplex functions and exact solutions of one hydrodynamic equation,” Zb. Pr. Inst. Mat. NAN Ukr., 14, No. 1, 262–274 (2017).

    Google Scholar 

  88. V. S. Shpakivskyi, “On monogenic functions defined in different commutative algebras,” J. Math. Sci., 239, No. 1, 92–109 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  89. V. S. Shpakivskyi, “On monogenic functions on expansions of a commutative algebra,” Proc. Intern. Ge-ometry Center, 11, No. 3, 1–18 (2018).

    MathSciNet  Google Scholar 

  90. V. S. Shpakivskyi, “Hypercomplex method for solving linear PDEs with constant coefficients,” Proc. of IAMM of NASU, 32, 147–168 (2018).

    Google Scholar 

  91. V. S. Shpakivs’kyi and T.S. Kuz’menko, “On one class of quaternionic mappings,” Ukr. Math. J., 68, No. 1, 127–143 (2016).

    Article  MATH  Google Scholar 

  92. V. S. Shpakivskyi and T. S. Kuzmenko, “Integral theorems for the quaternionic G-monogenic mappings,” An. Şt. Univ. Ovidius Constantą, 24, No. 2, 271–281 (2016).

    MathSciNet  MATH  Google Scholar 

  93. V. S. Shpakivskyi and T. S. Kuzmenko, “On monogenic mappings of a quaternionic variable,” J. Math. Sci., 221, No. 5, 712–726 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  94. V. S. Shpakivskyi and S. A. Plaksa, “Integral theorems in a commutative three-dimensional harmonic algebra,” in: Progress in Analysis and Its Applications, World Scientific, London, 2010, pp. 232–239.

    Google Scholar 

  95. V. S. Shpakivskyi and S. A. Plaksa, “Integral theorems and a Cauchy formula in a commutative threedimensional harmonic algebra,” Bull. Soc. Sci. Lettr. Lódź, 60, 47–54 (2010).

    MATH  Google Scholar 

  96. V. I. Smirnov, A Course of Higher Mathematics, 3, Part 2, Pergamon Press, Oxford, 1964. 97. L. Sobrero, “Nuovo metodo per lo studio dei problemi di elasticità, con applicazione al problema della piastra forata,” Ricer. Ingegneria, 13, No. 2, 255–264 (1934).

  97. E. Study, “Uber systeme complexer zahlen und ihre anwendung in der theorie der transformationsgruppen,” Monatsh. Math. Physik, 1, 283–354 (1890).

    Article  MathSciNet  MATH  Google Scholar 

  98. A. Sudbery, “Quaternionic analysis,” Math. Proc. Camb. Phil. Soc., 85, 199–225 (1979). 100. G. Tolstoff, “Sur les fonctions bornées vérifiant les conditions de Cauchy–Riemann,” Rec. Math., 10(52), Nos. 1–2, 79–85 (1942).

  99. Ju. Ju. Trokhimchuk, Continuous Mappings and Conditions of Monogeneity, D. Davey, New York, 1964.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiy A. Plaksa.

Additional information

Dedicated to the memory of my colleagues Igor Mel’nichenko and Volodymyr Kovalev on the occasion of their 80th birthday

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 15, No. 4, pp. 543–575 October–December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plaksa, S.A. Monogenic Functions in Commutative Algebras Associated with Classical Equations of Mathematical Physics. J Math Sci 242, 432–456 (2019). https://doi.org/10.1007/s10958-019-04488-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-019-04488-3

Keywords

Navigation