Skip to main content
Log in

Some Mathematical Problems of Control of Quantum Systems

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Currently, quantum technologies are actively developing; these technologies are based on quantum effects in individual quantum systems—atoms or molecules. The mathematical study of problems of control of quantum systems is of particular importance. In this paper, we consider certain problems associated with control of quantum systems: extrema of target functionals for population transfer problems and generation of unitary processes and incoherent control and generation of arbitrary density matrices for open quantum systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Accardi, Y. G. Lu, and I. V. Volovich, Quantum Theory and Its Stochastic Limit, Springer-Verlag, Berlin (2002).

    Book  MATH  Google Scholar 

  2. D. D’Alessandro, Introduction to Quantum Control and Dynamics, Chapman & Hall, Boca Raton (2007).

    Book  MATH  Google Scholar 

  3. J. T. Barreiro, P. Schindler, O. Gühne, T. Monz, M. Chwalla, C. F. Roos, M. Hennrich, and R. Blatt, “Experimental multiparticle entanglement dynamics induced by decoherence,” Nature Phys., 6, 943–946 (2010).

    Article  Google Scholar 

  4. S. Boixo, T. F. Ronnow, S. V. Isakov, Zh. Wang, D. Wecker, D. A. Lidar, J. M. Martinis, and M. Troyer, “Quantum annealing with more than one hundred qubits,” Nature Phys., 10, No. 3, 218–224 (2013).

    Article  Google Scholar 

  5. P. W. Brumer and M. Shapiro, Principles of the Quantum Control of Molecular Processes, Wiley-Interscience (2003).

  6. E. B. Davis, Quantum Theory of Open Systems, Academic Press, (1976).

  7. P. de Fouquieres and S. G. Schirmer, “Quantum control landscapes: A closer look,” Infin. Dim. Anal. Quantum Probab. Rel. Topics, 16, No. 3, 1350021 (2013).

    Article  MATH  Google Scholar 

  8. L. A. Fradkov and O. A. Yakubovsky (eds.), Control of Molecular and Quantum Systems [in Russian], Institute of Computer Studies, Moscow–Izhevsk (2003).

  9. V. Giovannetti, A. S. Holevo, and R. García-Patrón, “A solution of Gaussian optimizer conjecture for quantum channels,” Commun. Math. Phys., 334, No. 3, 1553–1571 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. S. Holevo, Quantum Systems, Channels, Information [in Russian], MCCME, Moscow (2010).

  11. M. Hsieh, R. Wu, H. Rabitz, and D. Lidar, “Optimal control landscape for the generation of unitary transformations with constrained dynamics,” Phys. Rev. A, 81, 062352 (2010).

    Article  Google Scholar 

  12. D. A. Kronberg, Yu. I. Ozhigov, and A. Yu. Chernyavsky, Quantum Cryptography [in Russian], MAKS Press, Moscow (2011).

    Google Scholar 

  13. V. S. Letokhov, Laser Control of Atoms and Molecules, Oxford Univ. Press (2007).

  14. K. W. Moore and H. Rabitz, “Exploring quantum control landscapes: Topology, features and optimization scaling,” Phys. Rev. A, 84, 012109 (2011).

  15. A. Pechen’, “Engineering arbitrary pure and mixed quantum states,” Phys. Rev. A, 84, 042106 (2011).

    Article  Google Scholar 

  16. A. Pechen’ and N. Il’in, “Trap-free manipulation in the Landau–Zener system,” Phys. Rev. A, 86, 052117 (2012).

    Article  Google Scholar 

  17. A. Pechen’ and N. Il’in, “Coherent control of qubit is free of traps,” Tr. Mat. Inst. Steklova, 285, 244–252 (2014).

    MATH  Google Scholar 

  18. A.N. Pechen’ and N. B. Il’in, “On extrema of objective functional in problem of generating single-qubit quantum gates at small times,” Izv. Ross. Akad. Nauk, Ser. Mat., 80, No. 6, 217–229 (2016).

    Article  MathSciNet  Google Scholar 

  19. A. Pechen’ and H. Rabitz, “Teaching the environment to control quantum systems,” Phys. Rev. A, 73, 062102 (2006).

    Article  Google Scholar 

  20. A. Pechen’ and D. Tannor, “Are there traps in quantum control landscapes?” Phys. Rev. Lett., 106, 120402 (2011).

    Article  Google Scholar 

  21. A. N. Pechen’ and D. J. Tannor, “Control of quantum transmission is trap-free,” Can. J. Chem., 92, No. 2, 157–159 (2014).

    Article  Google Scholar 

  22. H. Rabitz, M. Hsieh, and C. Rosenthal, “Quantum optimally controlled transition landscapes,” Science, 303, 1998–2001 (2004).

    Article  Google Scholar 

  23. S. A. Rice and M. Zhao, Optical Control of Molecular Dynamics, Wiley, New York (2000).

    Google Scholar 

  24. D. Rossini, T. Calarco, V. Giovannetti, S. Montangero, and R. Fazio, “Decoherence induced by interacting quantum spin baths,” Phys. Rev. A, 75, 032333 (2007).

    Article  Google Scholar 

  25. D. J. Tannor, Introduction to Quantum Mechanics: A Time Dependent Perspective, Sausalito Univ. Sci. Press (2007).

  26. A. S. Trushechkin and I. V. Volovich, “Perturbative treatment of inter-site couplings in the local description of open quantum networks,” Europhys. Lett., 113, No. 3, 30005 (2016).

    Article  Google Scholar 

  27. K. A. Valiev and A. A. Kokin, Quantum Computers: Hopes and Reality [in Russian], Regul. Khaot. Dinamika, Izhevsk (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Pechen’.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie

Obzory, Vol. 138, Quantum Computing, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pechen’, A.N. Some Mathematical Problems of Control of Quantum Systems. J Math Sci 241, 185–190 (2019). https://doi.org/10.1007/s10958-019-04416-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-019-04416-5

Keywords and phrases

AMS Subject Classification

Navigation