Skip to main content
Log in

Quantum Branch-and-Bound Algorithm and its Application to the Travelling Salesman Problem

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We propose a quantum branch-and-bound algorithm based on the general scheme of the branch-and-bound method and the quantum nested searching algorithm and examine its computational efficiency. We also compare this algorithm with a similar classical algorithm on the example of the travelling salesman problem. We show that in the vast majority of problems, the classical algorithm is quicker than the quantum algorithm due to greater adaptability. However, the operation time of the quantum algorithm is constant for all problem, whereas the classical algorithm runs very slowly for certain problems. In the worst case, the quantum branch-and-bound algorithm is proved to be several times more efficient than the classical algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ahuja, S. Kapoor, “A quantum algorithm for finding the maximum,” e-print arxiv.org/abs/quant-ph/9911082

  2. A. Ambainis, “Quantum search algorithm,” SIGACT News, 35, No. 2, 22–35 (2004).

    Article  Google Scholar 

  3. C. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, “Strengths and weaknesses of quantum computing,” SIAM J. Comput., 26, No. 5, 1510–1523 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Billingsley, Probability and Measure, Wiley, New York (1995).

    MATH  Google Scholar 

  5. G. Brassard, P. Høyer, M. Mosca, and A. Tapp, “Quantum amplitude amplification and estimation,” Quantum Comput. Quantum Inform. Sci., Contemp. Math. Ser., 305, 53–74 (2002).

    MathSciNet  MATH  Google Scholar 

  6. N. J. Cerf, L. Grover, and C. P. Williams, “Nested quantum search and structured problems,” Phys. Rev. A, 61, No. 3, 032303 (2000).

    Article  Google Scholar 

  7. A. Childs, S. Kimmel, and R. Kothari, “The quantum query complexity of read-many formulas,” Lect. Notes Comput. Sci., 7501, 336–348 (2012).

  8. A. M. Childs, A. J. Landahl, and P. A. Parrilo, “Improved quantum algorithms for the ordered search problem via semidefinite programming,” Phys. Rev. A, 75, No. 3, 032335 (2007).

    Article  Google Scholar 

  9. R. Cleve, D. Gavinsky, and D. L. Yonge-Mallo, “Quantum algorithms for evaluating min-max trees,” in: Theory of Quantum Computation, Communication, and Cryptography, Lect. Notes Comput. Sci., 5106, (2008), pp. 11–15.

  10. M. Cortina-Borja and T. Robinson, “Estimating the asymptotic constants of the total length of Euclidean minimal spanning trees with power-weighted edges,” Stat. Probab. Lett., 47, No. 2, 125–128 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  11. T. G. Crainic, B. Le Cun, and C. Roucairol, “Parallel branch-and-bound algorithms,” in: Parallel Combinatorica and Optimization, Wiley, New York (2006), pp. 1–28.

  12. C. Dürr, M. Heiligman, P. Høyer, and M. Mhalla, “Quantum query complexity of some graph problems,” SIAM J. Comput., 35, No. 6, 1310–1328 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Dürr and P. Høyer, “A quantum algorithm for finding the minimum,” arxiv.org/abs/quant-ph/9607014

  14. E. Farhi, J. Goldstone, and S. Gutmann, “A quantum algorithm for the Hamiltonian NAND tree,” Theory Comput., 4, 169–190 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, “Invariant quantum algorithms for insertion into an ordered list,” arxiv.org/abs/quant-ph/9901059

  16. I. P. Gent and T. Walsh, “The TSP phase transition,” Artificial Intelligence, 88, No. 1, 349–358 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  17. L. K. Grover, “A fast quantum mechanical algorithm for database search,” in: Proc. 28 Ann. Symp. on the Theory of Computing, ACM Press, New York (1996), pp. 212–219.

  18. P. Høyer, J. Neerbek, and Y. Shi, “Quantum complexities of ordered searching, sorting, and element distinctness,” Algorithmica, 34, No. 4, 429–448 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Kesten and S. Lee, “The central limit theorem for weighted minimal spanning trees on random points,” Ann. Probab., 6, No. 2, 495–527 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  20. L. A. B. Kowada, C. Lavor, R. Portugal, and C. M. H. de Figueiredo, “A new quantum algorithm for solving the minimum searching problem,” Int. J. Quantum Inform., 6, No. 3, 427–436 (2008).

    Article  MATH  Google Scholar 

  21. S. Mandrà, G. G. Guerreschi, and A. Aspuru-Guzik, “Faster than classical quantum algorithm for dense formulas of exact satisfiability and occupation problems,” New J. Phys., 18, No. 7, 073003 (2016).

    Article  Google Scholar 

  22. B. W. Reichardt, “Reflections for quantum query algorithms,” in: Proc. 22 ACM-SIAM Symp. on Discrete Algorithms (2011), pp. 560–569; arxiv.org/abs/1005.1601

  23. M. Steele, “Growth rates of Euclidean minimal spanning trees with power weighted edges,” Ann. Probab., 16, No. 4, 1767–1787 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Wagner, Principles of Operations Research, Prentice Hall, Englewood Cliffs, New Jersey (1969).

    MATH  Google Scholar 

  25. T. J. Yoder, G. H. Low, and I. L. Chuang, “Fixed-point quantum search with an optimal number of queries,” Phys. Rev. Lett., 113, 210501 (2014).

    Article  Google Scholar 

  26. W. Zhang, State-Space Search: Algorithms, Complexity, Extensions, and Applications, Springer-Verlag (1999).

  27. D. A. Zholobov, Introduction in Mathematical Programming [in Russian], MEPhI, Moscow (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Markevich.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 138, Quantum Computing, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markevich, E.A., Trushechkin, A.S. Quantum Branch-and-Bound Algorithm and its Application to the Travelling Salesman Problem. J Math Sci 241, 168–184 (2019). https://doi.org/10.1007/s10958-019-04415-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-019-04415-6

Keywords and phrases

AMS Subject Classification

Navigation