Skip to main content
Log in

Algebras of Projectors and Mutually Unbiased Bases in Dimension 7

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We apply methods of the representation theory, combinatorial algebra, and noncommutative geometry to various problems of quantum tomography. We introduce the algebra of projectors that satisfy a certain commutation relation, examine this relation by combinatorial methods, and develop the representation theory of this algebra. We also present a geometrical interpretation of our problem and apply the results obtained to the description of the Petrescu family of mutually unbiased bases in dimension 7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bondal and I. Zhdanovskiy, Representation theory for system of projectors and discrete Laplace operator, Preprint IPMU13-0001.

  2. A. Bondal and I. Zhdanovskiy, “Orthogonal pairs and mutually unbiased bases,” J. Math. Sci., 216, No. 1, 23–40 (2016).

    Article  MATH  Google Scholar 

  3. A. Bondal and I. Zhdanovskiy, “Symplectic geometry of unbiasedness and critical points of a potential,” Adv. Stud. Pure Math. (to appear); arXiv:1507.00081.

  4. T. Durt, B.-G. Englert, I. Bengtsson, and K. Zyczkowski, “On mutually unbiased bases,” Int. J. Quantum Inform., 8, 535 (2010).

    Article  MATH  Google Scholar 

  5. U. Haagerup, “Orthogonal maximal abelian *-subalgebras of the n × n matrices and cyclic nroots,” in: Operator Algebras and Quantum Field Theory (S. Doplicher et al., eds.), International Press (1997), pp. 296–322.

  6. A. I. Kostrikin, I. A. Kostrikin, and V. A. Ufnarovski, “Orthogonal decompositions of simple Lie algebras (type A n),” Tr. Mat. Inst. Steklova, 158, 105–120 (1981).

    MathSciNet  Google Scholar 

  7. A. I. Kostrikin and Pham Huu Tiep, Orthogonal Decompositions and Integral Lattices, Walter de Gruyter (1994).

  8. M. Matolcsi and F. Szollosi, “Towards a classification of 6 × 6 complex Hadamard matrices,” Open. Syst. Inf. Dyn., 15, 93 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  9. J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton Univ. Press, Berlin (1955).

    MATH  Google Scholar 

  10. R. Nicoara, “A finiteness result for commuting squares of matrix algebras,” J. Operator Theory, 55, No. 2, 295–310 ((2006)); arXiv:math/0404301.

  11. M. Petrescu, Existence of continuous families of complex Hadamard matrices of certain prime dimensions and related results, Ph.D. Thesis, University of California Los Angeles (1997).

  12. S. Popa, “Orthogonal pairs of *-subalgebras in finite von Neumann algebras,” J. Operator Theory, 9, 253–268 (1983).

    MathSciNet  MATH  Google Scholar 

  13. M. B. Ruskai, “Some connections between frames, mutually unbiased bases, and POVM’s in quantum information theory,” Acta Appl. Math., 108, No. 3, 709–719 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Sakai, C -Algebras and W -Algebras, Springer-Verlag, New York–Heidelberg–Berlin (1971).

    MATH  Google Scholar 

  15. F. Szollosi, “Complex Hadamard matrices of order 6: A four-parameter family,” J. Lond. Math. Soc., 85, 616–632 (2012); arXiv:http:1008.0632.

  16. W. Tadej and K. Zyczkowski, “Defect of a unitary matrix,” Linear Algebra Appl., 429, 447–481 (2008).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Zhdanovskiy.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 138, Quantum Computing, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhdanovskiy, I.Y., Kocherova, A.S. Algebras of Projectors and Mutually Unbiased Bases in Dimension 7. J Math Sci 241, 125–157 (2019). https://doi.org/10.1007/s10958-019-04413-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-019-04413-8

Keywords and phrases

AMS Subject Classification

Navigation