Skip to main content
Log in

Algebraic Methods of the Study of Quantum Information Transfer Channels

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Kraus representation of quantum information transfer channels is widely used in practice. We present examples of Kraus decompositions for channels that possess the covariance property with respect to the maximal commutative group of unitary operators. We show that in some problems (for example, the problem on the estimate of the minimal output entropy of the channel), the choice of a Kraus representation with nonminimal number of Kraus operators is relevant. We also present certain algebraic properties of noncommutative operator graphs generated by Kraus operators for the case of quantum channels that demonstrate the superactivation phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. G. Amosov, “On Weyl channels being covariant with respect to the maximum commutative group of unitaries,” J. Math. Phys., 48, No. 1, 2104–2117 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  2. G. G. Amosov, “The strong superadditivity conjecture holds for the quantum depolarizing channel in any dimension,” Phys. Rev. A, 75, No. 6, 060304 (2007).

    Article  Google Scholar 

  3. G. G. Amosov, “On estimating the output entropy of the tensor product of a phase-damping channel and an arbitrary channel,” Probl. Pered. Inform., 49, No. 3, 32–39 (2013).

    MathSciNet  MATH  Google Scholar 

  4. G. G. Amosov, “Estimating the output entropy of a tensor product of two quantum channels,” Teor. Mat. Fiz., 182, No. 3, 453–464 (2015).

    Article  MathSciNet  Google Scholar 

  5. G. G. Amosov and I. Yu. Zhdanovskii, “Structure of the algebra generated by a noncommutative operator graph which demonstrates the superactivation phenomenon for zero-error capacity,” Mat. Zametki, 99, No. 6, 929–932 (2016).

    Article  MATH  Google Scholar 

  6. G. G. Amosov and I. Yu. Zhdanovsky, “On the noncommutative deformation of the operator graph corresponding to the Klein group,” J. Math. Sci., 215, No. 6, 659–676 (2016).

    Article  MATH  Google Scholar 

  7. C. H. Bennett, C. A. Fuchs, and J. A. Smolin, “Entanglement-enhanced classical communication on a noisy quantum channel,” in: Quantum Communication, Computing and Measurement, Plenum Press, New York (1997), pp. 79–88.

  8. M. D. Choi, “Completely positive linear maps on complex matrices,” Lin. Alg. Appl., 10, 285–290 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. D. Choi and E. G. Effros, “Injectivity and operator spaces,” J. Funct. Anal., 24, No. 2, 156–209 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  10. T. S. Cubitt, J. Chen, and A. W. Harrow, “Superactivation of the asymptotic zero-error classical capacity of a quantum channel,” IEEE Trans. Inform. Theor., 57, No. 12, 8114–8126 (2011); arXiv:0906.2547 (2009).

  11. R. Duan, Super-activation of zero-error capacity of noisy quantum channels, arXiv:0906.2527 (2009).

  12. A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory [in Russian], Nauka, Moscow (1980).

  13. A. S. Holevo, “Quantum coding theorems,” Usp. Mat. Nauk, 53, No. 6, 193–230 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. S. Holevo, “The capacity of the quantum channel with general signal states,” IEEE Trans. Inform. Theor., 44, No. 1, 269–273 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. S. Holevo, “On complementary channels and the additivity problem,” Probab. Theory. Appl., 51, 133–143 (2005).

    MathSciNet  Google Scholar 

  16. A. S. Holevo, Quantum Channel, System, Information, De Gryuter, Berlin–Boston (2012).

  17. A. S. Holevo and M. E. Shirokov, “On Shor’s channel extension and constrained channels,” Commun. Math. Phys., 249, 417–430 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  18. C. King, “Additivity for unital qubit channels,” J. Math. Phys., 43, No. 10, 4641–4653 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  19. C. King, “The capacity of the quantum depolarizing channel,” IEEE Trans. Inform. Theory, 49, No. 1, 221–229 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Kontsevich and A. Rosenberg, “Noncommutative smooth spaces,” in: Gelfand Mathematical Seminars, 1996–1999, Birkhäuser, Boston (2000), pp. 85–108.

  21. M. Nathanson and M. B. Ruskai, “Pauli diagonal channels constant on axes,” J. Phys. A: Math. Theor., 40, 8171–8204 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  22. M. B. Ruskai, S. Szarek, and E. Werner, “An analysis of completely positive trace-preserving maps on 2 × 2 matrices,” Lin. Alg. Appl., 347, 159–187 (2002).

    Article  MATH  Google Scholar 

  23. M. E. Shirokov, “On channels with positive quantum zero-error capacity having vanishing n-shot capacity,” Quantum Inf. Process., 14, No. 8, 3057–3074 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  24. P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys. Rev. A, 52, R2493–R2496 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Amosov.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 138, Quantum Computing, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amosov, G.G. Algebraic Methods of the Study of Quantum Information Transfer Channels. J Math Sci 241, 109–116 (2019). https://doi.org/10.1007/s10958-019-04411-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-019-04411-w

Keywords phrases

AMS Subject Classification

Navigation