Skip to main content
Log in

Systems of Generators of Matrix Incidence Algebras over Finite Fields

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The paper studies two numerical characteristics of matrix incidence algebras over finite fields associated with generating sets of such algebras: the minimal cardinality of a generating set and the length of an algebra. Generating sets are understood in the usual sense, the identity of the algebra being considered a word of length 0 in generators, and also in the strict sense, where this assumption is not used. A criterion for a subset to generate an incidence algebra in the strict sense is obtained. For all matrix incidence algebras, the minimum cardinality of a generating set and a generating set in the strict sense are determined as functions of the field cardinality and the order of the matrices. Some new results on the lengths of such algebras are obtained. In particular, the length of the algebra of “almost” diagonal matrices is determined, and a new upper bound for the length of an arbitrary matrix incidence algebra is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. A. Al’pin and Kh. D. Ikramov, “Reducibility theorems for pairs of matrices as rational criteria,” Linear Algebra Appl., 313, 155–161 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Guterman, O. Markova, and V. Mehrmann, “Lengths of quasi-commutative pairs of matrices,” Linear Algebra Appl., 498, 450–470 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Guterman, O. Markova, and V. Mehrmann, “Length realizability for pairs of quasi-commuting matrices,” Linear Algebra Appl., 568, 135–154 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Guterman, T. Laffey, O. Markova, and H. Šmigoc, “A resolution of Paz’s conjecture in the presence of a nonderogatory matrix,” Linear Algebra Appl., 543, 234–250 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Halbeisen, M. Hamilton, and P. Ružička, “Minimal generating sets of groups, rings, and fields,” Quaest. Math., 30, 355–363 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  6. M. C. Iovanov and G. D. Koffi, Incidence Algebras and Their Representation Theory, arXiv:1702.03356 (2017).

  7. T. Laffey, O. Markova, and H. Šmigoc, “The effect of assuming the identity as a generator on the length of the matrix algebra,” Linear Algebra Appl., 498, 378–393 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  8. V. Lomonosov and P. Rosenthal, “The simplest proof of Burnside’s theorem on matrix algebras,” Linear Algebra Appl., 383, 45–47 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  9. W. E. Longstaff and P. Rosenthal, “Generators of matrix incidence algebras,” Austral. J. Combin., 22, 117–121 (2000).

    MathSciNet  MATH  Google Scholar 

  10. W. E. Longstaff and P. Rosenthal, “On the lengths of irreducible pairs of complex matrices,” Proc. Amer. Math. Soc., 139, 3769–3777 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  11. V. E. Marenich, “Conjugation properties in incidence algebras,” Fundam. Prikl. Mat., 9, 111–123 (2003).

    MathSciNet  MATH  Google Scholar 

  12. O. V. Markova, “Length computation of matrix subalgebras of a special type,” Fundam. Prikl. Mat., 13, 165–197 (2007).

    Google Scholar 

  13. O. V. Markova, “An upper bound for the length of commutative algebras,” Mat. Sb., 200, 41–62 (2009).

    Article  MathSciNet  Google Scholar 

  14. O. V. Markova, “On the relationship between the length of an algebra and the index of nilpotency of its Jacobson radical,” Mat. Zametki, 94, 682–688 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  15. O. V. Markova, “Commutative nilpotent subalgebras with nilpotency index n − 1 in the algebra of matrices of order n,” Zap. Nauchn. Semin. POMI, 453, 219–242 (2016).

    Google Scholar 

  16. N. A. Načev, “Polynomial identities in incidence algebras,” Usp. Mat. Nauk, 32, 233–234 (1977).

    MathSciNet  MATH  Google Scholar 

  17. A. Paz, “An application of the Cayley–Hamilton theorem to matrix polynomials in several variables,” Linear Multilinear Algebra, 15, 161–170 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  18. R. S. Piers, Associative Algebras, Springer-Verlag (1982).

  19. G.-C. Rota, “On the foundations of combinatorial theory, I. Theory of Möbius functions,” Z. Wahrscheinlichkeitsrechnung, 2, 340-368 (1964).

    Article  MATH  Google Scholar 

  20. D. A. Smith, “Incidence functions as generalized arithmetic functions. I,” Duke Math. J., 34, 617-633 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  21. E. Spiegel and C. J. O’Donnel, Incidence Algebras, Marcel Dekker (1997).

  22. D. T. Tapkin, “Generalized matrix rings and generalization of incidence algebras,” Chebyshev. Sb., 16, 422–449 (2015).

    MathSciNet  Google Scholar 

  23. M. Radjabalipour, P. Rosenthal, and B. R. Yahaghi, “Burnside’s theorem for matrix rings over division rings,” Linear Algebra Appl., 383, 29–44 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  24. D. P. Zhelobenko, Compact Lie Groups and Their Representations [in Russian], Nauka, Moscow (1970).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kolegov.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 472, 2018, pp. 120–144.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolegov, N.A., Markova, O.V. Systems of Generators of Matrix Incidence Algebras over Finite Fields. J Math Sci 240, 783–798 (2019). https://doi.org/10.1007/s10958-019-04396-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-019-04396-6

Navigation