Journal of Mathematical Sciences

, Volume 240, Issue 5, pp 665–677 | Cite as

On the Consistency Analysis of Finite Difference Approximations

  • D. L. MichelsEmail author
  • V. P. Gerdt
  • Yu. A. Blinkov
  • D. A. Lyakhov

Finite difference schemes are widely used in applied mathematics to numerically solve partial differential equations. However, for a given solution scheme, it is usually difficult to evaluate the quality of the underlying finite difference approximation with respect to the inheritance of algebraic properties of the differential problem under consideration. In this paper, we present an appropriate quality criterion of strong consistency for finite difference approximations to systems of nonlinear partial differential equations. This property strengthens the standard requirement of consistency of difference equations with differential ones. We use a verification algorithm for strong consistency, which is based on the computation of difference Gröbner bases. This allows for the evaluation and construction of solution schemes that preserve some fundamental algebraic properties of the system at the discrete level. We demonstrate the suggested approach by simulating a Kármán vortex street for the two-dimensional incompressible viscous flow described by the Navier–Stokes equations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Amodio, Yu. A. Blinkov, V. P. Gerdt, and R. La Scala, “On consistency of finite difference approximations to the Navier–Stokes equations,” in: V. P. Gerdt, W. Koepff, E. W. Mayr, and E. V. Vorozhtsov (eds.), Computer Algebra in Scientific Computing / CASC 2013, Lecture Notes Comput. Sci., 8136, Springer, Cham (2013), pp. 46–60.Google Scholar
  2. 2.
    P. Amodio, Yu. A. Blinkov, V. P. Gerdt, and R. La Scala, “Algebraic construction and numerical behavior of a new s-consistent difference scheme for the 2D Navier–Stokes equations,” Appl. Math. Comput., 314, 408–421 (2017).MathSciNetzbMATHGoogle Scholar
  3. 3.
    T. Bächler, V. P. Gerdt, M. Lange-Hegermann, and D. Robertz, “Algorithmic Thomas decomposition of algebraic and differential systems,” J. Symbolic Comput., 47, No. 10, 1233–1266 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    T. Becker and V. Weispfenning, A Computational Approach to Commutative Algebra, Springer, New York (1993).Google Scholar
  5. 5.
    Yu. A. Blinkov, C. F. Cid, V. P. Gerdt, W. Plesken, and D. Robertz, “The MAPLE package Janet: II. Linear partial differential equations,” in: V. G. Ganzha, E. W. Mayr, and E. V. Vorozhtsov (eds.), Proceedings of the 6th International Workshop on Computer Algebra in Scientific Computing / CASC 2003, Technische Universit ät München (2003), pp. 41–54; the package Janet is freely available on the web page
  6. 6.
    D. Cox, J. Little, and D. O’Shie, Ideals, Varieties and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3rd edition, Springer, New York (2007).Google Scholar
  7. 7.
    V. P. Gerdt, “On decomposition of algebraic PDE systems into simple subsystems,” Acta Appl. Math., 101, 39–51 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    V. P. Gerdt, “Consistency analysis of finite difference approximations to PDE systems,” in: G. Adam, J. Buša, and M. Hnatič (eds.), Mathematical Modeling in Computational Physics / MMCP 2011, Lecture Notes Comput. Sci., 7125, Springer, Berlin (2012), pp. 28–42.Google Scholar
  9. 9.
    V. P. Gerdt, Yu. A. Blinkov, and V. V. Mozzhilkin, “Gröbner bases and generation of difference schemes for partial differential equations,” SIGMA, 2, 051 (2006).zbMATHGoogle Scholar
  10. 10.
    V. P. Gerdt and Yu. A. Blinkov, “Involution and difference schemes for the Navier–Stokes equations,” in: V. P. Gerdt, E. W. Mayr, and E. V. Vorozhtsov (eds.), Computer Algebra in Scientific Computing / CASC 2009, Lecture Notes Comput. Sci., 5743, Springer, Berlin (2009), pp. 94–105.Google Scholar
  11. 11.
    V. P. Gerdt and R. La Scala, “Noetherian quotient of the algebra of partial difference polynomials and Gröbner bases of symmetric ideals, J. Algebra, 423, 1233–1261 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    V. P. Gerdt and D. Robertz, “Consistency of finite difference approximations for linear PDE systems and its algorithmic verification,” in: S. M. Watt (ed.), Proceedings of ISSAC 2010, Association for Computing Machinery (2010), pp. 53–59.Google Scholar
  13. 13.
    V. P. Gerdt and D. Robertz, “Computation of difference Gröbner bases,” Comput. Sci. J. Moldova, 20, No. 2(59), 203–226 (2012).MathSciNetzbMATHGoogle Scholar
  14. 14.
    S. K. Godunov and V. S. Ryabenkii, Difference Schemes. An Introduction to the Underlying Theory, Elsevier, New York (1987).Google Scholar
  15. 15.
    P. M. Gresho and R. L. Sani, “On pressure boundary conditions for the incompressible Navier–Stokes equations,” Internat. J. Numer. Methods Fluids, 7, 1111–1145 (1987).CrossRefzbMATHGoogle Scholar
  16. 16.
    E. Hubert, “Notes on triangular sets and triangulation-decomposition algorithms. II,” in: F. Winkler and U. Langer (eds.), Symbolic and Numerical Scientific Computation, Lecture Notes Comput. Sci., 2630, Springer, Berlin (2001), pp. 40–87.Google Scholar
  17. 17.
    T. Kármán, Aerodynamics, McGraw-Hill, New York (1963).Google Scholar
  18. 18.
    J. Kim and P. Moin, “Application of a fractional-step method to incompressible Navier–Stokes equations,” J. Comput. Phys., 59, 308–323 (1985).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    E. R. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, New York–London (1973).zbMATHGoogle Scholar
  20. 20.
    M. Lange-Hegermann, “DifferentialThomas,” freely available on the web page
  21. 21.
    A. Levin, Difference Algebra, Springer (2008).Google Scholar
  22. 22.
    K. W. Morton and D. F. Mayers, Numerical Solution of Partial Differential Equations. An Introduction, Cambridge Univ. Press (2005).Google Scholar
  23. 23.
    F. Ollivier, “Standard bases of differential ideals,” in: S. Sakata (ed.), Applied Algebra. Algebraic Algorithms and Error-Correcting Codes/AAECC’90, Lecture Notes Comput. Sci., 508, Springer, London (1990), pp. 304–321.Google Scholar
  24. 24.
    D. Robertz, Formal Algorithmic Elimination for PDEs, Springer, Berlin (2014).Google Scholar
  25. 25.
    D. Robertz, LDA (Linear Difference Algebra), Aachen (2015), freely available on the web page
  26. 26.
    A. A. Samarskii, Theory of Difference Schemes, Marcel Dekker, New York (2001).CrossRefzbMATHGoogle Scholar
  27. 27.
    W. M. Seiler, Involution: The Formal Theory of Differential Equations and its Applications in Computer Algebra, Springer, Heidelberg (2010).CrossRefzbMATHGoogle Scholar
  28. 28.
    Yu. I. Shokin, “On conservatism of difference schemes of gas dynamics,” in: F. G. Zhuang and Y. L. Zhu (eds.), Tenth International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes Physics, 264, Springer, Berlin (1986), pp. 578–583.Google Scholar
  29. 29.
    A. F. Sidorov, V. P. Shapeev, and N. N. Yanenko, Method of Differential Constraints and its Applications to Gas Dynamics [in Russian], Nauka, Novosibirsk (1984).zbMATHGoogle Scholar
  30. 30.
    J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, 2nd edition, SIAM, Philadelphia (2004).Google Scholar
  31. 31.
    J. M. Thomas, Differential Systems, AMS Colloquium Publications, XXI (1937); Systems and Roots, The Wylliam Byrd Press, Rychmond, Virginia (1962).Google Scholar
  32. 32.
    J. W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods, 2nd edition, Springer, New York (1998).Google Scholar
  33. 33.
    D. V. Trushin, Difference Nullstellensatz, arXiv:0908.3865[math.AC] (2011).Google Scholar
  34. 34.
    A. Zobnin, “Admissible orderings and finiteness criteria for differential standard bases,” in: M. Kauers (ed.), Proceedings of ISSAC 2005, Association for Computing Machinery (2010), pp. 365–372.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • D. L. Michels
    • 1
    Email author
  • V. P. Gerdt
    • 2
    • 3
  • Yu. A. Blinkov
    • 4
  • D. A. Lyakhov
    • 1
  1. 1.KAUSTThuwalKingdom of Saudi Arabia
  2. 2.Joint Institute for Nuclear ResearchDubnaRussia
  3. 3.Russia and RUDN UniversityMoscowRussia
  4. 4.Saratov State UniversitySaratovRussia

Personalised recommendations