Skip to main content
Log in

Relations Between Second-Order Fuchsian Equations and First-Order Fuchsian Systems

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Each component of any solution of a Fuchsian differential system satisfies a Fuchsian differential equation. The set of Fuchsian systems is fibered into equivalence classes. Each class consists of systems with similar sets of matrix residues, the conjugation matrix being the same for all elements of the set. We investigate the corresponding classes of scalar equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Fuchs, “Über lineare homogene Differentialgleitungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich Singularitaeten,” Math. Ann., 163, 301–321 (1907).

    Article  MATH  Google Scholar 

  2. S. Slavyanov, “Painlevé equations as classical analogues of Heun equations,” J. Phys. A, 29, 7329–7335 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Slavyanov, “Antiquantization and the corresponding symmetries,” Theoret. Math. Phys., 185, 1522–1526 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  4. D. V. Anosov and A. A. Bolibruch, The Riemann–Hilbert Problem, Vieweg, Braunschweig (1994).

    Book  MATH  Google Scholar 

  5. A. Bolibruch, Monodromy Inverse Problems of the Analytic Theory of Differential Equations [in Russian], MCCME, Moscow (2009).

  6. A. Its and V. Novokshenov, The Isomonodromic Deformation Method in the Theory of Painlevé Equations, Lect. Notes Math., 1191, Springer, Berlin–New York (1986).

  7. A. Kapaev, “Lax pairs for Painlevé equations,” in: Isomonodromic Deformations and Applications in Physics, CRM Proc. Lect. Notes, 31, Amer. Math. Soc., Providence, Rhode Island (2002), pp. 37–48.

  8. V. Gromak, I. Laine, and S. Shimomura, Painlevé Differential Equations in the Complex Domain, De Gruyter, Berlin (2002).

  9. A. Bruno and A. Bathin (eds.), Painleve Equations and Related Topics, De Gruyter, Berlin–Boston (2012).

  10. S. Slavyanov and W. Lay, Special Functions: A Unified Theory Based on Singularities, Oxford Univ. Press, Oxford–New York (2002).

    MATH  Google Scholar 

  11. A. Ronveau (ed.), Heun’s Differential Equation, Oxford Univ. Press, Oxford–New York–Tokyo (1995).

  12. A. Kazakov and S. Slavyanov, “Symmetries of Heun equations and Okamoto transformations for Kovalevskaya–Painlevé equations,” Theoret. Math. Phys., 155, 721–732 (2008).

    Article  Google Scholar 

  13. S. Slavyanov et al., “Generation and removal of apparent singularities in linear ordinary differential equations with polynomial coefficients,” Theoret. Math. Phys., 189, 1726–1733 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Slavyanov, “Symmetries and apparent singularities for simplest Fuchsian equations,” Theoret. Math. Phys., 193, 1754–1760 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  15. K. Iwasaki, H. Kimura, S. Shimomura, and M. Iosida, From Gauss to Painlevé. A Modern Theory of Special Functions, Vieweg, Braunschweig (1991).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Babich.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 468, 2018, pp. 221–227.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babich, M.V., Slavyanov, S.Y. Relations Between Second-Order Fuchsian Equations and First-Order Fuchsian Systems. J Math Sci 240, 646–650 (2019). https://doi.org/10.1007/s10958-019-04381-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-019-04381-z

Navigation