Skip to main content
Log in

Coercive Solvability of Nonlocal Boundary-Value Problems for Parabolic Equations

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In an arbitrary Banach space E, we consider the nonlocal problem

$$ {\displaystyle \begin{array}{l}\upsilon^{\prime }(t)+A(t)\upsilon (t)=f(t)\kern1em \left(0\le t\le 1\right),\\ {}\upsilon (0)=\upsilon \left(\uplambda \right)+\mu \kern1em \left(0<\uplambda \le 1\right)\end{array}} $$

for an abstract parabolic equation with a linear unbounded strongly positive operator A(t) such that its domain D = D(A(t)) is independent of t and is everywhere dense in E. This operator generates an analytic semigroup exp{−sA(t)}(s ≥ 0).

We prove the coercive solvability of the problem in the Banach space \( {C}_0^{\alpha, \alpha}\left(\left[0,1\right],E\right)\left(0<\alpha <1\right) \) with weight (t + τ)α. Earlier, this result was known only for constant operators. We consider applications in the class of parabolic functional differential equations with transformation of spatial variables and in the class of parabolic equations with nonlocal conditions on the boundary of the domain. Thus, this describes parabolic equations with nonlocal conditions both with respect to time and with respect to spatial variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ashyralyev and A. Hanalyev, “Coercive solvability of parabolic differential equations with dependent operators,” TWMS J. Appl. Eng. Math., 2, No. 1, 75–93 (2012).

    MathSciNet  MATH  Google Scholar 

  2. A. Ashyralyev and A. Hanalyev, “Well-posedness of nonlocal parabolic differential problems with dependent operators,” Sci. World J., 2014, 1–11 (2014).

    Google Scholar 

  3. A. Ashyralyev, A. Hanalyev, and P. E. Sobolevskii, “Coercive solvability of the nonlocal boundary-value problem for parabolic differential equations,” Abstr. Appl. Anal., 6, No. 1, 53–61 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Ashyralyev and P. E. Sobolevskii, New Difference Schemes for Partial Differential Equations, Birkhäuser, Basel–Boston–Berlin (2004).

  5. K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, New York (2000).

  6. E. I. Galakhov and A. L. Skubachevskii, “On contracting nonnegative semigroups with nonlocal conditions,” Mat. Sb., 189, No. 1, 45–78 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  7. P. L. Gurevich, “Elliptic problems with nonlocal boundary conditions and Feller semigroups,” Sovrem. Mat. Fundam. Napravl., 38, 3–173 (2010).

    Google Scholar 

  8. D. Henry, Geometric Theory of Semilinear Parabolic Equations [Russian translation], Mir, Moscow (1985).

  9. T. Kato, Perturbation Theory for Linear Operators [Russian translation], Mir, Moscow (1972).

  10. M. A. Krasnosel’skiy, P. P. Zabreyko, E. I. Pustyl’nik, and P. E. Sobolevskiy, Integral Operators in Spaces of Summable Functions [in Russian], Nauka, Moscow (1966).

  11. S.G. Kreyn, Linear Differential Equations in Banach Space [in Russian], Nauka, Moscow (1967).

  12. S. G. Kreyn and M. I. Khazan, “Differential equations in Banach space,” Math. Anal., 21, 130–264 (1983).

    Google Scholar 

  13. L. E. Rossovskii, “Elliptic functional differential equations with contractions and extensions of independent variables of the unknown function,” Sovrem. Mat. Fundam. Napravl., 54, 3–138 (2014).

    Google Scholar 

  14. A.M. Selitskii and A. L. Skubachevskii, “Second boundary-value problem for parabolic differential-difference equation,” Tr. Semin. im. I. G. Petrovskogo, 26, 324–347 (2007).

    MathSciNet  MATH  Google Scholar 

  15. A. L. Skubachevskii, “The first boundary value problem for strongly elliptic differential-difference equations,” J. Diff. Equ., 63, 332–361 (1986).

    Article  MathSciNet  Google Scholar 

  16. A. L. Skubachevskii, Elliptic Functional Differential Equations and Applications, Birkhäuser, Basel–Boston–Berlin (1997).

  17. A. L. Skubachevskii, “Nonclassical boundary-value problems. I,” Sovrem. Mat. Fundam. Napravl., 26, 3–132 (2007).

    MATH  Google Scholar 

  18. A. L. Skubachevskii, “Neklassicheskie kraevye zadachi. II” [Nonclassical boundary-value problems. II,” Sovrem. Mat. Fundam. Napravl., 33, 3–179 (2009).

  19. A. L. Skubachevskii and R.V. Shamin, “First mixed problem for a parabolic differential-difference equation,” Mat. Zametki, 66, No. 1, 145–153 (1999).

    Article  MathSciNet  Google Scholar 

  20. A. L. Skubachevskii and E. L. Tsvetkov, “Second boundary-value problem for elliptic differential-difference equations,” Differ. Uravn., 25, No. 10, 1766–1776 (1989).

    MathSciNet  Google Scholar 

  21. P. E. Sobolevskii, “On equations of parabolic type in a Banach space,” Tr. Mosk. Mat. Obs., 10, 297–350 (1961).

    MathSciNet  Google Scholar 

  22. E. L. Tsvetkov, “Solvability and spectrum of the third boundary-value problem for elliptic differential-difference equation,” Mat. Zametki, 51, No. 6, 107–114 (1992).

    MathSciNet  Google Scholar 

  23. V. V. Vlasov, Functional Differential Equations in Sobolev Spaces and Their Spectral Analysis [in Russian], Izd-vo Popechit. Sov. Mekh.-Mat. F-ta MGU im. M.V. Lomonosova, Moscow (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Rossovskii.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 62, Differential and Functional Differential Equations, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossovskii, L.E., Hanalyev, A.R. Coercive Solvability of Nonlocal Boundary-Value Problems for Parabolic Equations. J Math Sci 239, 855–866 (2019). https://doi.org/10.1007/s10958-019-04330-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-019-04330-w

Navigation