Skip to main content
Log in

Oldroyd Model for Compressible Fluids

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, mathematical models of compressible viscoelastic Maxwell, Oldroyd, and Kelvin–Voigt fluids are derived. A model of rotating viscoelastic barotropic Oldroyd fluid is studied. A theorem on strong unique solvability of the corresponding initial-boundary value problem is proved. The spectral problem associated with such a system is studied. Results on the spectrum localization, essential and discrete spectra, and spectrum asymptotics are obtained. In the case where the system is in the weightlessness state and does not rotate, results on multiple completeness and basis property of a special system of elements are proved. In such a case, under the assumption the viscosity is sufficiently large, an expansion of the solution of the evolution problem with respect to a special system of elements is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.Ya. Azizov and I. S. Iokhvidov, Foundations of Theory of Linear Operators in Spaces with Indefinite Metrics [in Russian], Nauka, Moscow (1986).

    MATH  Google Scholar 

  2. T.Ya. Azizov, N. D. Kopachevskiy and L.D. Orlova, “Evolution and spectral problems generated by the problem of small movements of viscoelastic fluid,” Tr. St.-Peterbg. Mat. Obshch., 6, 5–33 (1998).

    Google Scholar 

  3. Yu. M. Berezanskiy, Expansion in Eigenfunctions of Self-Adjoint Operators [in Russian], Naukova Dumka, Kiev (1965).

  4. M. Sh. Birman and M. Z. Solomyak, “Asymptotic properties of the spectrum of differential equations,” Mathematical Analysis, 14, 5–58 (1977).

    MathSciNet  Google Scholar 

  5. M. Sh. Birman and M. Z. Solomjak, Spectral Theory of Self-Adjoint Operators in Hilbert Space, D. Reidel Publishing Company, Dordrecht–Boston–Lancaser–Tokyo (1987).

  6. A. Freudenthal and H. Geiringer, The Mathematical Theories of the Inelastic Continuum [Russian translation], Fizmatgiz, Moscow (1962).

  7. I. Gohberg, S. Goldberg, and M. A. Kaashoek, Classes of Linear Operators. Vol. 1, Birkhäuser, Basel–Boston–Berlin (1990).

  8. J. A. Goldsteyn, Semigroups of Linear Operators and Their Applications [Russian translation], Vyshcha Shkola, Kiev (1989).

  9. G. Grubb and G. Geymonat, “The essential spectrum of elliptic systems of mixed order,” Math. Ann., 227, 247–276 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  10. T. Kato, Perturbation Theory for Linear Operators [Russian translation], Mir, Moscow, (1972).

  11. W. Kelvin (Thomson), “On the theory of viscoelastic fluids,” Math. A. Phys. Pap., 3, 27–84 (1875).

  12. N. D. Kopachevsky and S. G. Krein, Operator Approach to Linear Problems of Hydrodynamics.Vol. 2: Nonself-Adjoint Problems for Viscous Fluids, Birkh¨auser, Basel–Boston–Berlin (2003).

  13. N. D. Kopachevskiy, S.G. Krein, and Ngo Zuy Kan, Operator Methods in Linear Hydrodynamics: Evolution and Spectral Problems [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  14. S.G. Krein, Linear Differential Equations in Banach Space [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  15. A. S. Markus, Introduction to Spectral Theory of Polynomial Operator Pencils [in Russian], Shtiintsa, Kishinev (1986).

  16. A. S. Markus and V. I. Matsaev, “Theorem on comparison of spectra and spectral asymptotics for the M. V. Keldysh pencil,” Mat. Sb., 123, No. 3, 391–406 (1984).

    MathSciNet  MATH  Google Scholar 

  17. J.C. Maxwell, “On the dynamical theory of gases,” Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 157, 49–88 (1867).

    Google Scholar 

  18. J.C. Maxwell, “On the dynamical theory of gases,” Philos. Mag., 35, 129–145 (1868).

    Article  MATH  Google Scholar 

  19. A. I. Miloslavskii, “Spectral analysis of small oscillations of a viscoelastic fluid in an open vessel,” Deposited in Ukr. NIINTI, No. 1221 (1989).

    Google Scholar 

  20. A. I. Miloslavskii, “The spectrum of small oscillations of a viscoelastic hereditary medium,” Dokl. Akad. Nauk SSSR, 309, No. 3, 532–536 (1989).

    MathSciNet  Google Scholar 

  21. S. G. Mikhlin, “Spectrum of the operator pencil from the elasticity theory,” Uspekhi Mat. Nauk, 28, No. 3, 43–82 (1973).

    MathSciNet  Google Scholar 

  22. J. G. Oldroyd, “On the formulation of rheological equations of state,” Proc. Roy. Soc. London. Ser. A, 200, 523–541 (1950).

    Article  MathSciNet  MATH  Google Scholar 

  23. J.G. Oldroyd, “The elastic and viscous properties of emulsions and suspensions,” Proc. Roy. Soc. London. Ser. A, 218, 122–132 (1953).

    Article  MATH  Google Scholar 

  24. A. P. Oskolkov, “Initial-boundary value problems for equations of motion of Kelvin-Voight fluids and Oldroyd fluids,” Trudy Mat. Inst. Steklov., 179, 126–164 (1988).

    MathSciNet  Google Scholar 

  25. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York (1983).

    Book  MATH  Google Scholar 

  26. K. Rektoris, Variational Methods in Mathematical Physics and Technics [Russian translation], Mir, Moscow (1985).

    Google Scholar 

  27. V. A. Solonnikov, “General boundary value problems for systems elliptic in the sense of A. Douglis and L. Nirenberg. II,” Trudy Mat. Inst. Steklov., 92, 233–297 (1966).

    MathSciNet  Google Scholar 

  28. W. Voight, “Uber die innere Reibung der fasten Korper, inslesondere der krystalle,” Gottinden Abh., 36, No. 1, 3–47 (1889).

    Google Scholar 

  29. W. Voight, “Uber innex Reibung faster Korper, insbesondere der Metalle,” Ann. Phys. U. Chem., 47, No. 9, 671–693 (1892).

    Article  Google Scholar 

  30. D. A. Zakora, “Operator approach to the Il’yushin model of a viscoelastic body of parabolic type,” Sovrem. Mat. Fundam. Napravl., 57, 31–64 (2015).

    MathSciNet  Google Scholar 

  31. V.G. Zvyagin and M.V. Turbin, “Investigation of initial-boundary value problems for Kelvin–Voigt mathematical models of motion of fluids,” Sovrem. Mat. Fundam. Napravl., 31, 3–144 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Zakora.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 61, Proceedings of the Crimean Autumn Mathematical School-Symposium, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakora, D.A. Oldroyd Model for Compressible Fluids. J Math Sci 239, 582–607 (2019). https://doi.org/10.1007/s10958-019-04317-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-019-04317-7

Navigation