Journal of Mathematical Sciences

, Volume 239, Issue 1, pp 92–109 | Cite as

On monogenic functions defined in different commutative algebras

  • Vitalii S. ShpakivskyiEmail author


The correspondence between a monogenic function in an arbitrary finite-dimensional commutative associative algebra and a finite collection of monogenic functions in a special commutative associative algebra is established.


Commutative associative algebra monogenic function characteristic equation integral representation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. W. Ketchum, “Analytic functions of hypercomplex variables,” Trans. Amer. Math. Soc., 30(4), 641–667 (1928).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    M. N. Roşculeţ, “Algebre infinite asociate la ecuaţii cu derivate parţiale, omogene, cu coeficienţi constanţi de ordin oarecare,” Studii şi Cercetări Matem., 6(3–4), 567–643 (1955).Google Scholar
  3. 3.
    M. N. Roşculeţ, “Algebre infinite, comutative, asociate la sisteme de ecuaţii cu derivate parţiale,” Studii şi Cercetări Matem., 7(3–4), 321–371 (1956).Google Scholar
  4. 4.
    A. Pogorui, R. M. Rodriguez-Dagnino, and M. Shapiro, “Solutions for PDEs with constant coefficients and derivability of functions ranged in commutative algebras,” Math. Meth. Appl. Sci., 37(17), 2799–2810 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    I. P. Mel’nichenko, “The representation of harmonic mappings by monogenic functions,” Ukr. Math. J., 27(5), 499–505 (1975).MathSciNetCrossRefGoogle Scholar
  6. 6.
    I. P. Mel’nichenko and S. A. Plaksa, Commutative Algebras and Spatial Potential Fields [in Russian], Institute of Mathematics of the NAS of Ukraine, 2008.Google Scholar
  7. 7.
    S. A. Plaksa and V. S. Shpakovskii, “Constructive description of monogenic functions in a harmonic algebra of the third rank,” Ukr. Math. J., 62(8), 1251–1266 (2011).MathSciNetCrossRefGoogle Scholar
  8. 8.
    S. A. Plaksa, R. P. Pukhtaevich, “Constructive description of monogenic functions in a three-dimensional harmonic algebra with one-dimensional radical,” Ukr. Math. J., 65(5) (2013), 740–751.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    R. P. Pukhtaievych, “Monogenic functions in a three-dimensional harmonic semisimple algebra,” Zb. Pr. Inst. Mat. NAN Ukr., 10(4–5), 352–361 (2013).zbMATHGoogle Scholar
  10. 10.
    S. A. Plaksa and V. S. Shpakivskyi, “Monogenic functions in a finite-dimensional algebra with unit and radical of maximal dimensionality,” J. Alger. Math. Soc., 1, 1–13 (2014).Google Scholar
  11. 11.
    S. A. Plaksa and R. P. Pukhtaievych, “Constructive description of monogenic functions in n-dimensional semisimple algebra,” An. Şt. Univ. Ovidius Constanţa, 22(1), 221–235 (2014).MathSciNetzbMATHGoogle Scholar
  12. 12.
    E. Cartan, “Les groupes bilinéares et les systèmes de nombres complexes,” Ann. de la Faculté des Sci. de Toulouse, 12(1), 1–64 (1898).MathSciNetCrossRefGoogle Scholar
  13. 13.
    E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Mat. Soc., Providence, RI, 1957.Google Scholar
  14. 14.
    V. S. Shpakivskyi, “Constructive description of monogenic functions in a finite-dimensional commutative associative algebra,” Adv. Pure Appl. Math., 7(1), 63–75 (2016).MathSciNetzbMATHGoogle Scholar
  15. 15.
    S. V. Grishchuk and S. A. Plaksa, “Monogenic functions in a biharmonic algebra,” Ukr. Math. J., 61(12), 1865–1876 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    G. Mazzola, “Generic finite schemes and Hochschiid cocycles,” Comment. Math. Helvetici, 55, 267–293 (1980).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    D. Burde and W. de Graaf, “Classification of Novicov algebras,” Applic. Alg. Engineer., Commun. Comput., 24(1), 1–15 (2013)CrossRefzbMATHGoogle Scholar
  18. 18.
    A. S. Hegazim and H. Abdelwahab, “Classification of five-dimensional nilpotent Jordan algebras,” Linear Algebra Its Applic., 494, 165–218 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    B. Poonen, “Isomorphism types of commutative algebras of finite rank over an algebraically closed field,” Contemp. Math., 463, 111–120 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    D. A. Suprunenko, “On maximum commutative subalgebras of the full linear algebra,” Uspekhi Mat. Nauk, 11(3) (1956), 181–184 (1956).Google Scholar
  21. 21.
    V. S. Shpakivskyi, “Monogenic functions in finite-dimensional commutative associative algebras,” Zb. Pr. Inst. Mat. NAN Ukr., 12(3), 251–268 (2015).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Mathematics of the NAS of UkraineKyivUkraine

Personalised recommendations