Journal of Mathematical Sciences

, Volume 238, Issue 4, pp 523–529 | Cite as

Estimates for Order Statistics in Terms of Quantiles

  • A. E. LitvakEmail author
  • K. Tikhomirov

Let X1, . . .,Xn be independent nonnegative random variables with cumulative distribution functions F1, F2, . . . , Fn satisfying certain (rather mild) conditions. We show that the median of kth smallest order statistic of the vector (X1, . . . , Xn) is equivalent to the quantile of order (k − 1/2)/n with respect to the averaged distribution \( F=\frac{1}{n}\sum \limits_{i=1}^n{F}_i \).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. C. Arnold and N. Balakrishnan, Relations, Bounds and Approximations for Order Statistics, Lect. Notes Stat., 53, Springer-Verlag, New York (1989).Google Scholar
  2. 2.
    N. Balakrishnan and A. C. Cohen, Order Statistics and Inference, Academic Press, New York (1991).zbMATHGoogle Scholar
  3. 3.
    H. A. David and H. N. Nagaraja, Order Statistics, 3rd ed., Wiley Series in Probability and Statistics. John Wiley & Sons, Chichester (2003).Google Scholar
  4. 4.
    Y. Gordon, A. E. Litvak, S. Mendelson, and A. Pajor, “Gaussian averages of interpolated bodies and applications to approximate reconstruction,” J. Approx. Theory, 149, 59–73 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Y. Gordon, A. E. Litvak, C. Sch¨utt, and E. Werner, “Geometry of spaces between zonoids and polytopes,” Bull. Sci. Math., 126, 733–762 (2002).MathSciNetCrossRefGoogle Scholar
  6. 6.
    Y. Gordon, A. E. Litvak, C. Sch¨utt, and E. Werner, “Minima of sequences of Gaussian random variables,” C. R. Acad. Sci. Paris, Sér. I Math., 340, 445–448 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Y. Gordon, A. E. Litvak, C. Schütt, and E. Werner, “On the minimum of several random variables,” Proc. Amer. Math. Soc., 134, 3665–3675 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Y. Gordon, A. E. Litvak, C. Schütt, and E. Werner, “Uniform estimates for order statistics and Orlicz functions,” Positivity, 16, 1–28 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    W. Hoeffding, “On the distribution of the number of successes in independent trials,” Ann. Math. Statist., 27, 713–721 (1956).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    A. E. Litvak and K. Tikhomirov, “Order statistics of vectors with dependent coordinates and the Karhunen–Loeve basis,” Ann. Appl. Prob., 28, 2083–2104 (2018).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    S. Mallat and O. Zeitouni, “A conjecture concerning optimality of the Karhunen–Loéve basis in nonlinear reconstruction,” arXiv:1109.0489.Google Scholar
  12. 12.
    P. K. Sen, “A note on order statistics for heterogeneous distributions,” Ann. Math. Statist., 41, 2137–2139 (1970).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of AlbertaEdmontonCanada
  2. 2.Princeton UniversityPrincetonUSA

Personalised recommendations