Skip to main content
Log in

On Semitopological Bicyclic Extensions of Linearly Ordered Groups

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

For a linearly ordered group G , we define a subset AG to be a shift-set if, for any x, y, z ϵ A with y < x, we get x · y-1 ··z ϵ A. We describe the natural partial order and solutions of equations on the semigroup B(A) of shifts of positive cones of A . We study topologizations of the semigroup B(A). In particular, we show that, for an arbitrary countable linearly ordered group G and a nonempty shift-set A of G , every Baire shift-continuous T1-topology τ on B(A) is discrete. We also prove that, for any linearly nondensely ordered group G and a nonempty shift-set A of G , every shift-continuous Hausdorff topology τ on the semigroup B (A) is discrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Vagner, “Generalized groups,” Dokl. Akad. Nauk SSSR, 84, No. 6, 1119–1122 (1952).

    MathSciNet  Google Scholar 

  2. A. D. Taimanov, “On the topologization of commutative semigroups,” Mat. Zametki, 17, No. 5, 745–748 (1975); English translation: Math. Notes, 17, No. 5, 443–444 (1975).

  3. A. D. Taimanov, “An example of a semigroup which admits only the discrete topology,” Algebra Logika, 12, No. 1, 114–116; English translation: Algebra Logic, 12, No. 1, 64–65 (1973).

  4. K. R. Ahre, “Locally compact bisimple inverse semigroups,” Semigroup Forum, 22, No. 1, 387–389 (1981), https://doi.org/10.1007/BF02572817.

    Article  MathSciNet  MATH  Google Scholar 

  5. K. R. Ahre, “On the closure of \( {B}_{\left[0,\infty \right)}^1, \)İstanbul Tek. Üniv. Bül., 36, No. 4, 553–562 (1983).

    MathSciNet  MATH  Google Scholar 

  6. K. R. Ahre, “On the closure of \( {B}_{\left[0,\infty \right)}^1, \)İstanbul Tek. Üniv. Bül., 42, No. 3, 387–390 (1989).

    MathSciNet  MATH  Google Scholar 

  7. K. R. Ahre, “On the closure of \( {B}_{\left[0,\infty \right)}^{\prime }, \)Semigroup Forum, 28, No. 1-3, 377–378 (1984).

    Article  MathSciNet  Google Scholar 

  8. K. R. Ahre, “On the closure of \( {B}_{\left[0,\infty \right)}^1, \)Semigroup Forum, 33, No. 2, 269–272 (1986).

    Article  MathSciNet  Google Scholar 

  9. O. Andersen, Ein Bericht über die Struktur Abstrakter Halbgruppen, PhD Thesis, Hamburg (1952).

  10. L. W. Anderson, R. P. Hunter, and R. J. Koch, “Some results on stability in semigroups,” Trans. Amer. Math. Soc., 117, 521–529 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  11. T. O. Banakh, S. Dimitrova, and O. V. Gutik, “The Rees-Suschkewitsch theorem for simple topological semigroups,” Mat. Stud., 31, No. 2, 211–218 (2009).

    MathSciNet  MATH  Google Scholar 

  12. T. Banakh, S. Dimitrova, and O. Gutik, “Embedding the bicyclic semigroup into countably compact topological semigroups,” Topology Appl., 157, No. 18, 2803–2814 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Bardyla, “Classifying locally compact semitopological polycyclic monoids,” Mat. Visn. NTSh, 13, 21–28 (2016).

    MATH  Google Scholar 

  14. S. Bardyla and O. Gutik, “On a semitopological polycyclic monoid,” Algebra Discrete Math., 21, No. 2, 163–183 (2016).

    MathSciNet  MATH  Google Scholar 

  15. M. O. Bertman and T. T. West, “Conditionally compact bicyclic semitopological semigroups,” Proc. Roy. Irish Acad. Sec. A: Math. Phys. Sci., 76, 219–226 (1976), http://www.jstor.org/stable/20489047.

    MathSciNet  MATH  Google Scholar 

  16. G. Birkhoff, Lattice Theory, Amer. Math. Soc., Providence, RI (1973), Amer. Math. Soc. Colloq. Publ., Vol. 25.

  17. J. H. Carruth, J. A. Hildebrant, and R. J. Koch, The Theory of Topological Semigroups, Marcel Dekker, New York, etc. (1983), Vol. 1 (1986), Vol. 2.

  18. I. Ya. Chuchman and O. V. Gutik, “Topological monoids of almost monotone injective cofinite partial self-maps of the set of positive integers,” Karpat. Mat. Publ., 2, No. 1, 119–132 (2010).

    MATH  Google Scholar 

  19. I. Chuchman and O. Gutik, “On monoids of injective partial self-maps almost everywhere the identity,” Demonstr. Math., 44, No. 4, 699–722 (2011), https://doi.org/10.1515/dema-2013-0340.

    MATH  Google Scholar 

  20. A. Clay and D. Rolfsen, Ordered Groups and Topology, Amer. Math. Soc., Providence, RI (2016), Ser. Graduate Studies in Mathematics, Vol. 176.

  21. A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Amer. Math. Soc., Providence, RI (1961), Vol. 1 (1972), Vol. 2.

  22. C. Eberhart and J. Selden, “On the closure of the bicyclic semigroup,” Trans. Amer. Math. Soc., 144, 115–126 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Engelking, General Topology, Heldermann, Berlin (1989).

    MATH  Google Scholar 

  24. I. R. Fihel and O. V. Gutik, “On the closure of the extended bicyclic semigroup,” Karpat. Mat. Publ., 3, No. 2, 131–157 (2011).

    MATH  Google Scholar 

  25. G. L. Fotedar, “On a class of bisimple inverse semigroups,” Riv. Mat. Univ. Parma. Ser. 4, 4, 49–53 (1978).

    MathSciNet  MATH  Google Scholar 

  26. G. L. Fotedar, “On a semigroup associated with an ordered group,” Math. Nachr., 60, No. 1-6, 297–302 (1974), DOI: https://doi.org/10.1002/mana.19740600128.

    Article  MathSciNet  MATH  Google Scholar 

  27. L. Fuchs, Partially Ordered Algebraic Systems, Pergamon Press, Oxford, etc. (1963).

  28. O. Gutik, “On the dichotomy of a locally compact semitopological bicyclic monoid with adjoined zero,” Visn. Lviv. Univ. Ser. Mekh.-Mat., Vyp. 80, 33–41 (2015).

    Google Scholar 

  29. O. Gutik, “Topological properties of Taimanov semigroups,” Mat. Visn. NTSh, 13, 29–34 (2016).

    MATH  Google Scholar 

  30. O. Gutik and K. Maksymyk, “On semitopological interassociates of the bicyclic monoid,” Visn. Lviv. Univ. Ser. Mekh.-Mat., Vyp. 82, 98–108 (2016).

    Google Scholar 

  31. O. Gutik, D. Pagon, and K. Pavlyk, “Congruences on bicyclic extensions of a linearly ordered group,” Acta Comment. Univ. Tartu. Math., 15, No. 2, 61–80 (2011).

    MathSciNet  MATH  Google Scholar 

  32. O. Gutik and I. Pozdnyakova, “On monoids of monotone injective partial self-maps of L n × lex with co-finite domains and images,” Algebra Discrete Math., 17, No. 2, 256–279 (2014).

    MathSciNet  MATH  Google Scholar 

  33. O. Gutik and D. Repovš, “On countably compact 0-simple topological inverse semigroups,” Semigroup Forum, 75, No. 2, 464–469 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  34. O. Gutik and D. Repovš, “On monoids of injective partial self-maps of integers with cofinite domains and images,” Georgian Math. J., 19, No. 3, 511–532 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  35. O. Gutik and D. Repovš, “Topological monoids of monotone, injective partial self-maps of ℕ having cofinite domain and image,” Stud. Sci. Math. Hungar., 48, No. 3, 342–353 (2011).

    MATH  Google Scholar 

  36. R. C. Haworth and R. A. McCoy, Baire Spaces, Inst. Matematyczny Polskiej Akad. Nauk, Warszawa (1977), http://eudml.org/doc/268479.

    MATH  Google Scholar 

  37. J. A. Hildebrant and R. J. Koch, “Swelling actions of Γ -compact semigroups,” Semigroup Forum, 33, 65–85 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  38. R. J. Koch and A. D. Wallace, “Stability in semigroups,” Duke Math. J., 24, No. 2, 193–195 (1957); doi:https://doi.org/10.1215/S0012-7094-57-02425-0.

    Article  MathSciNet  MATH  Google Scholar 

  39. R. Korkmaz, “Dense inverse subsemigroups of a topological inverse semigroup,” Semigroup Forum, 78, No. 3, 528–535 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  40. R. Korkmaz, On the closure of \( {B}_{\left[-\infty, +\infty \right)}^2, \)Semigroup Forum, 54, No. 2, 166–174 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Lawson, Inverse Semigroups. The Theory of Partial Symmetries, World Sci, Singapore (1998).

    Book  MATH  Google Scholar 

  42. Z. Mesyan, J. D. Mitchell, M. Morayne, and Y. H. Péresse, “Topological graph inverse semigroups,” Topol. Appl., 208, 106–126 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Petrich, Inverse Semigroups, Wiley, New York (1984).

    MATH  Google Scholar 

  44. W. Ruppert, Compact Semitopological Semigroups: An Intrinsic Theory, Lect. Notes Math., 1079, Springer, Berlin (1984).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 59, No. 4, pp. 31–43, October–December, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutik, O.V., Maksymyk, K.M. On Semitopological Bicyclic Extensions of Linearly Ordered Groups. J Math Sci 238, 32–45 (2019). https://doi.org/10.1007/s10958-019-04216-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-019-04216-x

Navigation