Skip to main content
Log in

Initial-Boundary-Value Problem for Inhomogeneous Degenerate Equations of Mixed Parabolic-Hyperbolic Type

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We consider initial-boundary-value problems for three classes of inhomogeneous degenerate equations of mixed parabolic-hyperbolic type: mixed-type equations with degenerate hyperbolic part, mixed-type equations with degenerate parabolic part, and mixed-type equations with power degeneration. In each case, we state a criterion of uniqueness of a solution to the problem. We construct solutions as series with respect to the system of eigenfunctions of the corresponding one-dimensional spectral problem. We prove that the uniqueness of the solution and the convergence of the series depend on the ratio of sides of the rectangular from the hyperbolic part of the mixed domain. In the proof of the existence of solutions to the problem, small denominators appear that impair the convergence of series constructed. In this connection, we obtain estimates of small denominators separated from zero and the corresponding asymptotics, which allows us, under certain conditions, to prove that the solution constructed belongs to the class of regular solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnol’d, “Small denominators,” Izv. Ross. Akad. Nauk. Ser. Mat., 25, 21–86 (1961).

    Google Scholar 

  2. V. I. Arnol’d, “Small denominators and the problem on the stability of motion in classical and celestial mechanics,” Usp. Mat. Nauk, 18, No. 6 (114), 91–192 (1963).

    MathSciNet  Google Scholar 

  3. H. Bateman and A. Erdélyi, Higher Transcendental Functions, McGraw Hills, New York–Toronto–London (1953).

  4. I. M. Gel’fand, “Some problems of analysis and differential equations,” Usp. Mat. Nauk, 14, No. 3, 3–19 (1959).

    Google Scholar 

  5. T. D. Dzhuraev, Boundary-Value Problems for Equations of Mixed and Mixed-Composite Types [in Russian], Fan, Tashkent (1979).

    Google Scholar 

  6. T. D. Dzhuraev, A. Sopuev, and M. Mamazhanov, Boundary-Value Problems for Equations of Parabolic-Hyperbolic Type [in Russian], Fan, Tashkent (1986).

  7. A. Zygmund, Trigonometric Series, Vols. 1, 2, Cambridge Univ. Press (1959).

  8. N. Yu. Kapustin, “Tricomi problem for a parabolic-hyperbolic equation with degenerate hyperbolic part, I,” Differ. Uravn., 23, No. 1, 72–78 (1987).

    Google Scholar 

  9. N. Yu. Kapustin, “Tricomi problem for a parabolic-hyperbolic equation with degenerate hyperbolic part, II,” Differ. Uravn., 24, No. 8, 1379–1386 (1988).

    Google Scholar 

  10. N. Yu. Kapustin, Problems for parabolic-hyperbolic equations and the corresponding spectral problems with parameters at boundary points [in Russian], thesis, Moscow State Univ., Moscow (2012).

  11. N. Yu. Kapustin and E. I. Moiseev, “On a spectral problem from the theory of parabolic-hyperbolic heat equations,” Dokl. Ross. Akad. Nauk, 352, No. 4, 451 (1997).

    MathSciNet  MATH  Google Scholar 

  12. A. Ya. Khinchin, Continued Fractions, Univ. of Chicago Press, Chicago–London (1964).

  13. O. A. Ladyzhenskaya and L. Stupyalis, “On equations of mixed type,” Vestn. Leningr. Univ. Ser. Mat. Mekh. Astron., 19, No. 4, 38–46 (1965).

    MathSciNet  Google Scholar 

  14. I. S. Lomov, “Small denominators in the analytical theory of degenerate differential equations,” Differ. Uravn., 29, No. 12, 2079–2089 (1993).

    Google Scholar 

  15. K. B. Sabitov, Functional, Differential, and Integral Equations [in Russian], Vysshaya Shkola, Moscow (2005).

    Google Scholar 

  16. K. B. Sabitov, “Tricomi problem for an equation of mixed parabolic-hyperbolic type in a rectangular domain,” Mat. Zametki, 86, No. 2, 273–279 (2009).

    Article  Google Scholar 

  17. K. B. Sabitov, “Initial-boundary-value problem for a parabolic-hyperbolic equation with power degeneration on the transition line,” Differ. Uravn., 47, No. 1, 1–8 (2011).

    MathSciNet  Google Scholar 

  18. K. B. Sabitov, Equations of Mathematical Physicss [in Russian], Fizmatlit, Moscow (2013).

    Google Scholar 

  19. K. B. Sabitov, Direct and Inverse Problems for Equations of Mixed Parabolic-Hyperbolic type [in Russian], Gilem, Ufa (2015).

  20. K. B. Sabitov and L. Kh. Rakhmanova, “Initial-boundary-value problem for an equation of mixed parabolic-hyperbolic type in a rectangular domain,” Differ. Uravn., 44, No. 9, 1175–1181 (2008).

    MathSciNet  MATH  Google Scholar 

  21. K. B. Sabitov and E. M. Safin, “Inverse problem for an equation of mixed parabolic-hyperbolic type in a rectangular domain,” Izv. Vyssh. Ucheb. Zaved. Ser. Mat., 56, No. 4, 55–62 (2010).

    MathSciNet  MATH  Google Scholar 

  22. K. B. Sabitov and E. M. Safin, “Inverse problem for an equation of mixed parabolic-hyperbolic type,” Mat. Zametki, 87, No. 6, 907–918 (2010).

    Article  MathSciNet  Google Scholar 

  23. K. B. Sabitov and S. N. Sidorov, “On a nonlocal problem for a degenerate parabolic-hyperbolic equation,” Differ. Uravn., 50, No. 3, 356–365 (2014).

    Google Scholar 

  24. K. B. Sabitov and S. N. Sidorov, “Inverse problem for a degenerate parabolic-hyperbolic equation with nonlocal boundary condition,” Izv. Vyssh. Ucheb. Zaved. Ser. Mat., 1, 46–59 (2015).

    MathSciNet  MATH  Google Scholar 

  25. A. B. Shidlovsky, Diophantine Approximations and Transcendental Numbers [in Russian], Moscow State Univ., Moscow (1982).

    Google Scholar 

  26. L. Stupyalis, “Initial-boundary-value problems for equations of mixed type,” Tr. Mat. Inst. Steklova, 27, 115–145 (1975).

    MathSciNet  Google Scholar 

  27. Ya. S. Ufland, “On the problem on the propagation of oscillations in composite transmission lines,” Inzh.-Fiz. Zh., 7, No. 1, 89–92 (1964).

    Google Scholar 

  28. Ya. S. Ufland and I. T. Lozanovskaya, “On one class of problems of mathematical physics with mixed spectrum,” Dokl. Akad. Nauk SSSR, 164, No. 5, 1005–1007 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Sabitov.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 137, Mathematical Physics, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabitov, K.B., Sidorov, S.N. Initial-Boundary-Value Problem for Inhomogeneous Degenerate Equations of Mixed Parabolic-Hyperbolic Type. J Math Sci 236, 603–640 (2019). https://doi.org/10.1007/s10958-018-4136-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-018-4136-y

Keywords and phrases

AMS Subject Classification

Navigation