In this paper, we obtain a lower bound on the number of edges in a unit distance graph Γ in an infinitesimal plane layer *ℝ*^{2} × [0, *ε*]^{d}, which relates the number of edges *e*(Γ), the number of vertices ν(Γ), and the independence number α(Γ). Our bound \( e\left(\varGamma \right)\ge \frac{19\nu \left(\varGamma \right)-50\alpha \left(\varGamma \right)}{3} \) is a generalization of a previous bound for distance graphs in the plane and a strong improvement of Turán’s bound in the case where \( \frac{1}{5}\le \frac{\alpha \left(\varGamma \right)}{v\left(\varGamma \right)}\le \frac{2}{7} \).

This is a preview of subscription content, access via your institution.

## References

- 1.
P. Brass, W. Moser, and J. Pach,

*Research Problems in Discrete Geometry*, Springer (2005). - 2.
A. Dainyak and A. Sapozhenko, “Independent sets in graphs,”

*Discrete Math. Appl.*,**26**, 323–346 (2016). - 3.
P. Erdős, “On sets of distances of

*n*points,”*Amer. Math. Monthly*,**53**, 248–250 (1946). - 4.
A. M. Raigorodskii, “Cliques and cycles in distance graphs and graphs of diameters,” in:

*Discrete Geometry and Algebraic Combinatorics*, Contemp. Math.,**625**, Amer. Math. Soc., Providence, Rhode Island (2014), pp. 93–109. - 5.
A. M. Raigorodskii, “Coloring distance graphs and graphs of diameters,” in:

*Thirty Essays on Geometric Graph Theory*, Springer, New York (2013), pp. 429–460. - 6.
A. M. Raigorodskii, “Combinatorial geometry and coding theory,”

*Fund. Inform.*,**145**, 359–369 (2016). - 7.
L. E. Shabanov and A. M. Raigorodskii, “Turán type results for distance graphs,”

*Discrete Comput. Geom.*,**56**, 814–832 (2016). - 8.
A. Soifer,

*Mathemetical Coloring Book*, Springer (2009). - 9.
M. Tikhomirov, “On computational complexity of length embeddability of graphs,”

*Discrete Math.*,**339**, No. 11, 2605–2612 (2016). - 10.
P. Turán, “On an extremal problem in graph theory,”

*Mat. Fiz. Lapok*,**48**, 436–452 (1941). - 11.
A. E. Guterman, V. K. Lubimov, A. M. Raigorodskii, and A. S. Usachev, “On the independence numbers of distance graphs with vertices at {−1, 0, 1}

^{n},”*Mat. Zametki*,**86**, No. 5, 794–796 (2009). - 12.
A. Y. Kanel-Belov, V. A. Voronov, and D. D. Cherkashin, “On the chromatic number of the plane,”

*Algebra Analiz*,**29**, No. 5 (2017). - 13.
V. K. Lubimov and A. M. Raigorodskii, “Lower bounds for the independence numbers of some distance graphs with vertices at {−1, 0, 1}

^{n},”*Dokl. Akad. Nauk*,**427**, No. 4, 458–460 (2009). - 14.
E. I. Ponomarenko and A. M. Raigorodskii, “New upper bounds for the independence numbers of graphs with vertices in {−1, 0, 1}

^{n}and their applications to problems of the chromatic numbers of distance graphs,”*Mat. Zametki*,**96**, No. 1, 138–147 (2014). - 15.
A. M. Raigorodskii, “The Erdős–Hadwiger problem and the chromatic numbers of finite geometric graphs,”

*Mat. Sb.*,**196**, No. 1, 123–156 (2005). - 16.
A. A. Sagdeev and A. M. Raigorodskii, “On the chromatic number of a space with a forbidden regular simplex,”

*Dokl. Acad. Nauk*,**472**, No. 2, 127–129 (2017). - 17.
M. Tikhomirov, “On the problem of testing the distance and multidistance embeddability of a graph,”

*Dokl. Akad. Nauk*,**468**, No. 3, 261–263 (2016). - 18.
D. D. Cherkashin and A. M. Raigorodskii, “On the chromatic numbers of spaces of small dimension,”

*Dokl. Akad. Nauk*,**472**, No. 1, 11–12 (2017).

## Author information

### Affiliations

### Corresponding author

## Additional information

Translated from *Zapiski Nauchnykh Seminarov POMI*, Vol. 464, 2017, pp. 132–168.

## Rights and permissions

## About this article

### Cite this article

Shabanov, L.E. Turán-Type Results for Distance Graphs in an Infinitesimal Plane Layer.
*J Math Sci* **236, **554–578 (2019). https://doi.org/10.1007/s10958-018-4133-1

Received:

Published:

Issue Date: