# Turán-Type Results for Distance Graphs in an Infinitesimal Plane Layer

Article

First Online:

- 15 Downloads
- 3 Citations

In this paper, we obtain a lower bound on the number of edges in a unit distance graph Γ in an infinitesimal plane layer *ℝ*^{2} × [0, *ε*]^{d}, which relates the number of edges *e*(Γ), the number of vertices ν(Γ), and the independence number α(Γ). Our bound \( e\left(\varGamma \right)\ge \frac{19\nu \left(\varGamma \right)-50\alpha \left(\varGamma \right)}{3} \) is a generalization of a previous bound for distance graphs in the plane and a strong improvement of Turán’s bound in the case where \( \frac{1}{5}\le \frac{\alpha \left(\varGamma \right)}{v\left(\varGamma \right)}\le \frac{2}{7} \).

## Preview

Unable to display preview. Download preview PDF.

## References

- 1.P. Brass, W. Moser, and J. Pach,
*Research Problems in Discrete Geometry*, Springer (2005).Google Scholar - 2.A. Dainyak and A. Sapozhenko, “Independent sets in graphs,”
*Discrete Math. Appl.*,**26**, 323–346 (2016).MathSciNetCrossRefGoogle Scholar - 3.P. Erdős, “On sets of distances of
*n*points,”*Amer. Math. Monthly*,**53**, 248–250 (1946).MathSciNetCrossRefGoogle Scholar - 4.A. M. Raigorodskii, “Cliques and cycles in distance graphs and graphs of diameters,” in:
*Discrete Geometry and Algebraic Combinatorics*, Contemp. Math.,**625**, Amer. Math. Soc., Providence, Rhode Island (2014), pp. 93–109.Google Scholar - 5.A. M. Raigorodskii, “Coloring distance graphs and graphs of diameters,” in:
*Thirty Essays on Geometric Graph Theory*, Springer, New York (2013), pp. 429–460.Google Scholar - 6.A. M. Raigorodskii, “Combinatorial geometry and coding theory,”
*Fund. Inform.*,**145**, 359–369 (2016).MathSciNetCrossRefGoogle Scholar - 7.L. E. Shabanov and A. M. Raigorodskii, “Turán type results for distance graphs,”
*Discrete Comput. Geom.*,**56**, 814–832 (2016).MathSciNetCrossRefGoogle Scholar - 8.A. Soifer,
*Mathemetical Coloring Book*, Springer (2009).Google Scholar - 9.M. Tikhomirov, “On computational complexity of length embeddability of graphs,”
*Discrete Math.*,**339**, No. 11, 2605–2612 (2016).MathSciNetCrossRefGoogle Scholar - 10.P. Turán, “On an extremal problem in graph theory,”
*Mat. Fiz. Lapok*,**48**, 436–452 (1941).MathSciNetGoogle Scholar - 11.A. E. Guterman, V. K. Lubimov, A. M. Raigorodskii, and A. S. Usachev, “On the independence numbers of distance graphs with vertices at {−1, 0, 1}
^{n},”*Mat. Zametki*,**86**, No. 5, 794–796 (2009).MathSciNetCrossRefGoogle Scholar - 12.A. Y. Kanel-Belov, V. A. Voronov, and D. D. Cherkashin, “On the chromatic number of the plane,”
*Algebra Analiz*,**29**, No. 5 (2017).Google Scholar - 13.V. K. Lubimov and A. M. Raigorodskii, “Lower bounds for the independence numbers of some distance graphs with vertices at {−1, 0, 1}
^{n},”*Dokl. Akad. Nauk*,**427**, No. 4, 458–460 (2009).MathSciNetGoogle Scholar - 14.E. I. Ponomarenko and A. M. Raigorodskii, “New upper bounds for the independence numbers of graphs with vertices in {−1, 0, 1}
^{n}and their applications to problems of the chromatic numbers of distance graphs,”*Mat. Zametki*,**96**, No. 1, 138–147 (2014).MathSciNetCrossRefGoogle Scholar - 15.A. M. Raigorodskii, “The Erdős–Hadwiger problem and the chromatic numbers of finite geometric graphs,”
*Mat. Sb.*,**196**, No. 1, 123–156 (2005).MathSciNetCrossRefGoogle Scholar - 16.A. A. Sagdeev and A. M. Raigorodskii, “On the chromatic number of a space with a forbidden regular simplex,”
*Dokl. Acad. Nauk*,**472**, No. 2, 127–129 (2017).MathSciNetzbMATHGoogle Scholar - 17.M. Tikhomirov, “On the problem of testing the distance and multidistance embeddability of a graph,”
*Dokl. Akad. Nauk*,**468**, No. 3, 261–263 (2016).MathSciNetGoogle Scholar - 18.D. D. Cherkashin and A. M. Raigorodskii, “On the chromatic numbers of spaces of small dimension,”
*Dokl. Akad. Nauk*,**472**, No. 1, 11–12 (2017).MathSciNetGoogle Scholar

## Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018