Skip to main content
Log in

Multiplicity of Positive Solutions to the Boundary-Value Problems for Fractional Laplacians

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

For the problem (−Δ)su=uq−1 in the annulus ΩR = BR+1 \ BR ∈ ℝn, a so-called “multiplicity effect” is established: for each N ∈ ℕ there exists R0 such that for all RR0 this problem has at least N different positive solutions. (−Δ)s in this problem stands either for Navier-type or for Dirichlet-type fractional Laplacian. Similar results were proved earlier for the equations with the usual Laplace operator and with the p-Laplacian operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Byeon, “Existence of many nonequivalent nonradial positive solutions of semilinear elliptic equations on three-dimensional annuli,” J. Diff. Eqs., 136, No. 1, 136–165 (1997).

    Article  MathSciNet  Google Scholar 

  2. L. Caffarelli and L. Silvestre, “An extension problem related to the fractional Laplacian,” Comm. PDE’s, 32, No. 7–9, 1245–1260 (2007).

    Article  MathSciNet  Google Scholar 

  3. A. Capella, J. Dávila, L. Dupaigne, and Y. Sire, “Regularity of radial extremal solutions for some non-local semilinear equations,” Comm. PDE’s, 36, No. 8, 1353–1384 (2011).

    Article  MathSciNet  Google Scholar 

  4. C. V. Coffman, “A non-linear boundary-value problem with many positive solutions,” J. Diff. Eqs., 54, No. 3, 429–437 (1984).

    Article  Google Scholar 

  5. A. Cotsiolis and N. K. Tavoularis, “Best constants for Sobolev inequalities for higher order fractional derivatives,” J. Math. Anal. Appl., 295, No. 1, 225–236 (2004).

    Article  MathSciNet  Google Scholar 

  6. F. Gazzola, H.-C. Grunau, and G. Sweers, “Optimal Sobolev and Hardy–Rellich constants under Navier boundary conditions,” Ann. Mat. Pura Appl. (4), 189, No. 3, 475–486 (2010).

    Article  MathSciNet  Google Scholar 

  7. Y. Ge, “Sharp Sobolev inequalities in critical dimensions,” Michigan Math. J., 51, No. 1, 27–45 (2003).

    Article  MathSciNet  Google Scholar 

  8. A. Iannizzotto, S. Mosconi, and M. Squassina, “H s versus C 0-weighted minimizers,” NoDEA Nonlinear Diff. Eqs Appl., 22, No. 3, 477–497 (2015).

    Article  Google Scholar 

  9. S. B. Kolonitskii, “Multiplicity of solutions of the Dirichlet problem for an equation with the p-Laplacian in a three-dimensional spherical layer,” Algebra Analiz, 22, No. 3, 206–221 (2010).

    MathSciNet  Google Scholar 

  10. A. Kufner and S. Fuchik, Nonlinear Differential Equations [Russian translation], Nauka, Moscow (1988).

    Google Scholar 

  11. Y. Y. Li, “Existence of many positive solutions of semilinear elliptic equations on annulus,” J. Diff. Eqs., 83, No. 2, 348–367 (1990).

    Article  MathSciNet  Google Scholar 

  12. R. Musina and A. I. Nazarov, “On fractional Laplacians,” Comm. PDE’s, 39, No. 9, 1780–1790 (2014).

    Article  MathSciNet  Google Scholar 

  13. R. Musina and A. I. Nazarov, “On the Sobolev and Hardy constants for the fractional Navier Laplacian,” Nonlinear Analysis, 121, 123–129 (2015).

    Article  MathSciNet  Google Scholar 

  14. R. Musina and A. I. Nazarov, “On fractional Laplacians–3,” J. ESAIM, 22, No. 3, 832–841 (2016).

    Article  MathSciNet  Google Scholar 

  15. R. Musina and A. I. Nazarov, “Variational inequalities for the spectral fractional Laplacian,” Comp. Math. Math. Phys., 57, No. 3, 373–386 (2017).

    Article  MathSciNet  Google Scholar 

  16. A. I. Nazarov, “On solutions of the Dirichlet problem for an equation involving the p-Laplacian in a spherical layer,” Trudy St. Peterburg. Mat. Obshch., 10, 33–62 (2004).

    Google Scholar 

  17. R. S. Palais, “The principle of symmetric criticality,” Comm. Math. Phys., 69, No. 1, 19–30 (1979).

    Article  MathSciNet  Google Scholar 

  18. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators [Russian translation], Mir, Moscow (1980).

    MATH  Google Scholar 

  19. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean spaces [in Russian], Mir, Moscow (1974).

    Google Scholar 

  20. P. R. Stinga and J. L. Torrea, “Extension problem and Harnack’s inequality for some fractional operators,” Comm. PDE’s, 35, No. 11, 2092–2122 (2010).

    Article  MathSciNet  Google Scholar 

  21. R. C. A. M. Van der Vorst, “Best constant for the embedding of the space H 2 ∩ H 1 0(Ω) into L 2N/(N−4),” Diff. Integral Eqs,” 6, No. 2, 259–276 (1993).

  22. G. N. Watson, A Treatise on the Theory of Bessel Functions. I [Russian translation], Moscow, Izd. Inostr. Lit. (1949).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Ustinov.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 459, 2017, pp. 104–126.

Translated by I. Ponomarenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ustinov, N.S. Multiplicity of Positive Solutions to the Boundary-Value Problems for Fractional Laplacians. J Math Sci 236, 446–460 (2019). https://doi.org/10.1007/s10958-018-4124-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-018-4124-2

Navigation