Skip to main content
Log in

On Projectors to Subspaces of Vector-Valued Functions Subject to Conditions of the Divergence-Free Type

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We study operators that project a vector-valued function υW1,2(Ω, ℝd) to subspaces formed by the condition that the divergence is orthogonal to a certain amount (finite or infinite) of test functions. The condition that the divergence is equal to zero almost everywhere presents the first (narrowest) limit case while the integral condition of zero mean divergence generates the other (widest) case. Estimates of the distance between υ and the respective projection on such a subspace are important for analysis of various mathematical models related to incompressible media problems (especially in the context of a posteriori error estimates. We establish different forms of such estimates, which contain only local constants associated with the stability (LBB) inequalities for subdomains. The approach developed in the paper also yields two-sided bounds of the inf-sup (LBB) constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Babuška and A. K. Aziz, Surway Lectures on the Mathematical Foundations of the Finite Element Method, Academic Press, New York (1972).

    Google Scholar 

  2. M. E. Bogovskii, “Solution of the first boundary value problem for the equation of continuity of an incompressible medium,” Soviet Math. Dokl., 248, No. 5, 1037–1040 (1979).

    MathSciNet  Google Scholar 

  3. M. Costabel and M. Dauge. “On the inequalities of Babuska–Aziz, Friedrichs and Horgan–Payne,” Arch. Ration. Mech. Anal., 217, No. 3, 873–898 (2015).

    Article  MathSciNet  Google Scholar 

  4. M. Costabel, M. Crouzeix, M. Dauge, and Y. Lafranche. “The inf-sup constant for the divergence on corner domains,” Num. Methods PDES, 31, No 2, 439–458 (2015).

    Article  MathSciNet  Google Scholar 

  5. M. Dobrowolski, “On the LBB constant on stretched domains,” Math. Nachr., 254/255, 64–67 (2003).

    Article  MathSciNet  Google Scholar 

  6. C. Horgan and L. Payne, “On inequalities of Korn, Friedrichs and Babuska–Aziz,” Arch. Ration. Mech. Anal., 82, 165–179 (1983).

    Article  MathSciNet  Google Scholar 

  7. M. Kessler, Die Ladyzhenskaya-Konstante in der numerischen Behandlung von Strömungsproblemen, Bayerischen Julius-Maximilians-Universität, Würzburg (2000).

    Google Scholar 

  8. O. A. Ladyzhenskaya, Mathematical Problems in the Dynamics of a Viscous Incompressible Flow, 2nd ed., Gordon and Breach, New York (1969).

    MATH  Google Scholar 

  9. O. A. Ladyzenskaja and V. A. Solonnikov, “Some problems of vector analysis, and generalized formulations of boundary value problems for the Navier-Stokes equation,” Zap. Nauchn. Semin. LOMI, 59, 81–116 (1976).

    MathSciNet  Google Scholar 

  10. J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson et Cie, Éditeurs, Paris (1967).

    MATH  Google Scholar 

  11. M. A. Olshanskii and E. V. Chizhonkov, “On the best constant in the inf sup condition for prolonged rectangular domains,” Mat. Zam., 67, No. 3, 387–396 (2000).

    Article  Google Scholar 

  12. L. E. Payne, “A bound for the optimal constant in an inequality of Ladyzhenskaya and Solonnikov,” IMA J. Appl. Math., 72, 563–569 (2007).

    Article  MathSciNet  Google Scholar 

  13. K. I. Piletskas, “On spaces of solenoidal vectors,” Zap. Nauchn. Semin. LOMI, 96, 237–239 (1980).

    MathSciNet  MATH  Google Scholar 

  14. K. I. Piletskas, “Spaces of solenoidal vectors,” Trudy Mat. Inst. Steklov, 159, 137–149 (1983).

    MathSciNet  MATH  Google Scholar 

  15. S. Repin, “A posteriori estimates for the Stokes problem,” J. Math. Sci., 109, No. 5, 1950–1964 (2002).

    Article  MathSciNet  Google Scholar 

  16. S. Repin, “Estimates of deviations from exact solutions for some boundary–value problems with incompressibility condition,” St. Petersburg Math. J., 16, No. 5, 124–161 (2004).

    MathSciNet  Google Scholar 

  17. S. Repin, A Posteriori Estimates for Partial Differential Equations, Walter de Gruyter, Berlin (2008).

    Book  Google Scholar 

  18. S. Repin, “Estimates of deviations from exact solution of the generalized Oseen problem,” Zap. Nauchn. Semin. POMI, 410, 110–130 (2013).

    MathSciNet  Google Scholar 

  19. S. Repin, “Estimates of the distance to the set of divergence free fields,” Zap. Nauchn. Semin. POMI, 425, 99–116 (2014).

    Google Scholar 

  20. S. Repin, “On variational representations of the constant in the inf sup condition for the Stokes problem,” Zap. Nauchn. Semin. POMI, 444, 110–123 (2016).

    MathSciNet  Google Scholar 

  21. S. Repin, “Estimates of the distance to the set of solenoidal vector fields and applications to a posteriori error control,” Comput. Methods Appl. Math., 15, No. 4, 515–530 (2015).

    Article  MathSciNet  Google Scholar 

  22. G. Stoyan, “Towards discrete Velte decompositions and narrow bounds for inf-sup constants,” Comput. Math. Appl., 38, 243–261 (1999).

    Article  MathSciNet  Google Scholar 

  23. R. Temam, Navier–Stokes Equations. Theory and Numerical Analysis, North-Holland, Amsterdam (1979).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Repin.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 459, 2017, pp. 83–103.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Repin, S. On Projectors to Subspaces of Vector-Valued Functions Subject to Conditions of the Divergence-Free Type. J Math Sci 236, 430–445 (2019). https://doi.org/10.1007/s10958-018-4123-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-018-4123-3

Navigation