## Abstract

We have obtained the exact-by-order estimates of Kolmogorov, linear, and trigonometric widths of the classes \( {B}_{p,\theta}^{\varOmega } \) of periodic functions of many variables in the space *B*_{1,1} the norm in which is stronger than the *L*_{1}-norm.

### Similar content being viewed by others

## References

S. N. Bernstein,

*Collection of Works, vol. II. Constructional Theory of Functions (1931 – 1953)*[in Russian], AS of the USSR, Moscow (1954).S. B. Stechkin, “On the order of the best approximations of continuous functions,”

*Izv. Akad. Nauk SSSR. Ser. Mat.*,**15**, 219–242 (1951).N. K. Bari and S. B. Stechkin, “The best approximations and differential properties of two conjugate functions,”

*Trudy Mosk. Mat. Obshch.*,**5**, 483–522 (1956).Sun Yongsheng and Wang Heping, “Representation and approximation of multivariate periodic functions with bounded mixed moduli of smoothness,”

*Trudy Mat. Inst. Ross. Akad. Nauk*,**219**, 356–377 (1997).T. I. Amanov, “Theorems of representation and embedding for the functional spaces \( {S}_{p,\theta}^{(r)}B\left({\mathbb{R}}_n\right) \) and \( {S}_{p,\theta}^{(r)}\left(0\le {x}_j\le 2\pi; j=1,\dots, n\right) \),”

*Trudy Mat. Inst. Akad. Nauk SSSR*,**77**, 5–34 (1965).P. I. Lizorkin and S. M. Nikol’skii, “The spaces of functions with mixed smoothness from the decomposition viewpoint,”

*Trudy Mat. Inst. Akad. Nauk SSSR*,**187**, 143–161 (1989).S. M. Nikol’skii, “Functions with dominating mixed derivative satisfying the multiple H’older condition,”

*Sibir. Mat. Zh.*,**4**, No. 6, 1342–1364 (1963).N. N. Pustovoitov, “The representation and approximation of periodic functions of many variables with given mixed modulus of continuity,”

*Anal. Math*.,**20**, 35–48 (1994).S. A. Stasyuk and O. V. Fedunik, “Approximative characteristics of the classes \( {B}_{p,\theta}^{\varOmega } \) of periodic functions of many variables,”

*Ukr. Mat. Zh.*,**58**, No. 5, 692–704 (2006).A. Kolmogoroff, “Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse,”

*Ann. of Math.*,**37**, 107–110 (1936).V. M. Tikhomirov, “Widths of sets in functional spaces and the theory of the best approximations,”

*Uspekhi Mat. Nauk*,**15**, No. 3, 81–120 (1960).R. S. Ismagilov, “Widths of sets in linear normalized spaces and the approximation of functions by trigonometric polynomials,”

*Uspekhi Mat. Nauk*,**29**, No. 3, 161–178 (1974).A. S. Romanyuk, “On the best approximations and Kolmogorov widths of the Besov classes of periodic functions of many variables,”

*Ukr. Mat. Zh.*,**47**, No. 1, 79–92 (1995).A. S. Romanyuk, “Linear widths of the Besov classes of periodic functions of many variables. I,”

*Ukr. Mat. Zh*.,**53**, No. 5, 647–661 (2001).A. S. Romanyuk, “Linear widths of the Besov classes of periodic functions of many variables. II,”

*Ukr. Mat. Zh.*,**53**, No. 6, 820–829 (2001).A. S. Romanyuk, “Kolmogorov and trigonometric widths of the Besov classes \( {B}_{p,\theta}^r \) of periodic functions of many variables,”

*Mat. Sbornik*,**197**, No. 1, 71–96 (2006).A. S. Romanyuk, “The best approximations and widths of the classes of periodic functions of many variables,”

*Mat. Sbornik*,**199**, No. 2, 93–114 (2008).A. S. Romanyuk, “Widths and the best approximation of the classes \( {B}_{p,\theta}^r \) of periodic functions of many variables,”

*Anal. Math.*,**37**, 181–213 (2011).A. S. Romanyuk, “Estimates of entropic numbers and Kolmogorov widths of the Nikol’skii–Besov classes of periodic functions of many variables,”

*Ukr. Mat. Zh.*,**67**, No. 11, 1540–1556 (2015).A. S. Romanyuk, “Entropic numbers and widths of the classes \( {B}_{p,\theta}^r \) of periodic functions of many variables,”

*Ukr. Mat. Zh.*,**68**, No. 10, 1403–1417 (2016).V. N. Temlyakov, “Approximation of functions with bounded mixed derivative,”

*Trudy Mat. Inst. Akad. Nauk SSSR*,**178**, 1–112 (1986).A. S. Romanyuk, “Approximative Characteristics of the Classes of Periodic Functions of Many Variables” [in Russian], Institute of Mathematics of the NAS of Ukraine, Kiev (2012).

D. Ding, V. N. Temlyakov, and T. Ullrich, “Hyperbolic Cross Approximation,” arXiv: 1601. 03978 v 3 [math.NA ] 21 Apr. 2017.

O. V. Fedunik, “Estimates of linear widths of the classes \( {B}_{p,\theta}^{\varOmega } \) of periodic functions of many variables,” in:

*Problems of the Theory of Approximation of Functions and Adjacent Questions*[in Ukrainian], Institute of Mathematics of the NAS of Ukraine, Kiev (2007), pp. 376–389.V. N. Temlyakov, “Estimates of asymptotic characteristics of the classes of functions with bounded mixed derivative or difference,”

*Trudy Mat. Inst. Akad. Nauk SSSR*,**189**, 138–168 (1989).

## Author information

### Authors and Affiliations

### Corresponding author

## Additional information

Translated from Ukrainian by V. V. Kukhtin

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 15, No. 1, pp. 43–56 January–March, 2018.

## Rights and permissions

## About this article

### Cite this article

Hembars’kyi, M.V., Hembars’ka, S.B. Widths of the classes \( {B}_{p,\theta}^{\varOmega } \) of periodic functions of many variables in the space *B*_{1,1}.
*J Math Sci* **235**, 35–45 (2018). https://doi.org/10.1007/s10958-018-4056-x

Received:

Published:

Issue Date:

DOI: https://doi.org/10.1007/s10958-018-4056-x