Skip to main content
Log in

Widths of the classes \( {B}_{p,\theta}^{\varOmega } \) of periodic functions of many variables in the space B1,1

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We have obtained the exact-by-order estimates of Kolmogorov, linear, and trigonometric widths of the classes \( {B}_{p,\theta}^{\varOmega } \) of periodic functions of many variables in the space B1,1 the norm in which is stronger than the L1-norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. N. Bernstein, Collection of Works, vol. II. Constructional Theory of Functions (1931 – 1953) [in Russian], AS of the USSR, Moscow (1954).

    Google Scholar 

  2. S. B. Stechkin, “On the order of the best approximations of continuous functions,” Izv. Akad. Nauk SSSR. Ser. Mat., 15, 219–242 (1951).

    MathSciNet  Google Scholar 

  3. N. K. Bari and S. B. Stechkin, “The best approximations and differential properties of two conjugate functions,” Trudy Mosk. Mat. Obshch., 5, 483–522 (1956).

    MathSciNet  Google Scholar 

  4. Sun Yongsheng and Wang Heping, “Representation and approximation of multivariate periodic functions with bounded mixed moduli of smoothness,” Trudy Mat. Inst. Ross. Akad. Nauk, 219, 356–377 (1997).

    MathSciNet  MATH  Google Scholar 

  5. T. I. Amanov, “Theorems of representation and embedding for the functional spaces \( {S}_{p,\theta}^{(r)}B\left({\mathbb{R}}_n\right) \) and \( {S}_{p,\theta}^{(r)}\left(0\le {x}_j\le 2\pi; j=1,\dots, n\right) \),” Trudy Mat. Inst. Akad. Nauk SSSR, 77, 5–34 (1965).

  6. P. I. Lizorkin and S. M. Nikol’skii, “The spaces of functions with mixed smoothness from the decomposition viewpoint,” Trudy Mat. Inst. Akad. Nauk SSSR, 187, 143–161 (1989).

    Google Scholar 

  7. S. M. Nikol’skii, “Functions with dominating mixed derivative satisfying the multiple H’older condition,” Sibir. Mat. Zh., 4, No. 6, 1342–1364 (1963).

    Google Scholar 

  8. N. N. Pustovoitov, “The representation and approximation of periodic functions of many variables with given mixed modulus of continuity,” Anal. Math., 20, 35–48 (1994).

    Article  MathSciNet  Google Scholar 

  9. S. A. Stasyuk and O. V. Fedunik, “Approximative characteristics of the classes \( {B}_{p,\theta}^{\varOmega } \) of periodic functions of many variables,” Ukr. Mat. Zh., 58, No. 5, 692–704 (2006).

  10. A. Kolmogoroff, “Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse,” Ann. of Math., 37, 107–110 (1936).

    Article  MathSciNet  Google Scholar 

  11. V. M. Tikhomirov, “Widths of sets in functional spaces and the theory of the best approximations,” Uspekhi Mat. Nauk, 15, No. 3, 81–120 (1960).

    Google Scholar 

  12. R. S. Ismagilov, “Widths of sets in linear normalized spaces and the approximation of functions by trigonometric polynomials,” Uspekhi Mat. Nauk, 29, No. 3, 161–178 (1974).

    MathSciNet  Google Scholar 

  13. A. S. Romanyuk, “On the best approximations and Kolmogorov widths of the Besov classes of periodic functions of many variables,” Ukr. Mat. Zh., 47, No. 1, 79–92 (1995).

    Article  Google Scholar 

  14. A. S. Romanyuk, “Linear widths of the Besov classes of periodic functions of many variables. I,” Ukr. Mat. Zh., 53, No. 5, 647–661 (2001).

    Article  MathSciNet  Google Scholar 

  15. A. S. Romanyuk, “Linear widths of the Besov classes of periodic functions of many variables. II,” Ukr. Mat. Zh., 53, No. 6, 820–829 (2001).

    Article  MathSciNet  Google Scholar 

  16. A. S. Romanyuk, “Kolmogorov and trigonometric widths of the Besov classes \( {B}_{p,\theta}^r \) of periodic functions of many variables,” Mat. Sbornik, 197, No. 1, 71–96 (2006).

  17. A. S. Romanyuk, “The best approximations and widths of the classes of periodic functions of many variables,” Mat. Sbornik, 199, No. 2, 93–114 (2008).

    Article  Google Scholar 

  18. A. S. Romanyuk, “Widths and the best approximation of the classes \( {B}_{p,\theta}^r \) of periodic functions of many variables,” Anal. Math., 37, 181–213 (2011).

  19. A. S. Romanyuk, “Estimates of entropic numbers and Kolmogorov widths of the Nikol’skii–Besov classes of periodic functions of many variables,” Ukr. Mat. Zh., 67, No. 11, 1540–1556 (2015).

    Google Scholar 

  20. A. S. Romanyuk, “Entropic numbers and widths of the classes \( {B}_{p,\theta}^r \) of periodic functions of many variables,” Ukr. Mat. Zh., 68, No. 10, 1403–1417 (2016).

  21. V. N. Temlyakov, “Approximation of functions with bounded mixed derivative,” Trudy Mat. Inst. Akad. Nauk SSSR, 178, 1–112 (1986).

    MathSciNet  Google Scholar 

  22. A. S. Romanyuk, “Approximative Characteristics of the Classes of Periodic Functions of Many Variables” [in Russian], Institute of Mathematics of the NAS of Ukraine, Kiev (2012).

  23. D. Ding, V. N. Temlyakov, and T. Ullrich, “Hyperbolic Cross Approximation,” arXiv: 1601. 03978 v 3 [math.NA ] 21 Apr. 2017.

  24. O. V. Fedunik, “Estimates of linear widths of the classes \( {B}_{p,\theta}^{\varOmega } \) of periodic functions of many variables,” in: Problems of the Theory of Approximation of Functions and Adjacent Questions [in Ukrainian], Institute of Mathematics of the NAS of Ukraine, Kiev (2007), pp. 376–389.

  25. V. N. Temlyakov, “Estimates of asymptotic characteristics of the classes of functions with bounded mixed derivative or difference,” Trudy Mat. Inst. Akad. Nauk SSSR, 189, 138–168 (1989).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mykhailo V. Hembars’kyi.

Additional information

Translated from Ukrainian by V. V. Kukhtin

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 15, No. 1, pp. 43–56 January–March, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hembars’kyi, M.V., Hembars’ka, S.B. Widths of the classes \( {B}_{p,\theta}^{\varOmega } \) of periodic functions of many variables in the space B1,1. J Math Sci 235, 35–45 (2018). https://doi.org/10.1007/s10958-018-4056-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-018-4056-x

Keywords

Navigation