Skip to main content
Log in

Maximum Principle for Nonlinear Parabolic Equations

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

A maximum principle is obtained for solutions of parabolic equations of the form

$$ \mathcal{L}u-{u}_t=f\left(x,t,u, Du\right), $$

where

$$ \mathcal{L}u=\sum \limits_{i,j}^n{a}_{ij}\left(x,t,u\right)\frac{\partial^2u}{\partial {x}_i\partial {x}_j}+\sum \limits_{i=1}^n{b}_i\left(x,t,u\right)\frac{\partial u}{\partial {x}_i}. $$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Vasiliev, Yu. M. Romanovskii, and V. G. Yakhno, Autowave Processes [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  2. A. M. Il’yin, A. S. Kalashnikov, and O. A. Oleinik, “Second-order linear equations of parabolic type,” Usp. Mat. Nauk, 17, No. 3, 3–146 (1962).

    MathSciNet  Google Scholar 

  3. V. A. Kondratiev, “Asymptotic behavior of solutions of second-order nonlinear parabolic equations,” Tr. MIAN, 260, 180–192 (2008).

    MathSciNet  Google Scholar 

  4. V. A. Kondratiev and E. M. Landis, “Qualitative theory of linear second-order partial differential equations,” Itogi Nauki Tekh. Ser. Sovr. Probl. Mat., 32, 99–215 (1988).

    MATH  Google Scholar 

  5. A. A. Kon’kov, “Solutions of nonautonomous ordinary differential equations,” Izv. Ross. Akad. Nauk, Ser. Mat., 65, No. 2, 81–126 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. A. Kon’kov, “Stabilization of solutions of the nonlinear Fokker–Planck equation,” Tr. Semin. Petrovskogo, 29, 333–345 (2013).

    Google Scholar 

  7. A. A. Kon’kov, “On the asymptotic behaviour of solutions of nonlinear parabolic equations,” Proc. Roy. Soc. Edinburgh, 136, 365–384 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  8. O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type [in Russian], Nauka, Moscow (1967).

    MATH  Google Scholar 

  9. E. M. Landis, Second-Order Elliptic and Parabolic Equations [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  10. S. Täcklind, “Sur les classes quasianalytiques des solutions des équations aux dérivêes partielles du type parabolique,” Nova Acta Soc. Sci. Uppsal., Ser. 10, 4, No. 3, 1–57 (1936).

  11. A. N. Tikhonov, “Uniqueness theorems for the heat equation,” Mat. Sb., 42, No. 2, 199–216 (1935).

    Google Scholar 

  12. E. Holmgren, “Sur les solutions quasianalytiques de l’équation de la chaleur,” Ark. Mat., 18, 1–9 (1924).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kon’kov.

Additional information

Translated from Trudy Seminara imeni I. G. Petrovskogo, No. 31, pp. 63–86, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kon’kov, A.A. Maximum Principle for Nonlinear Parabolic Equations. J Math Sci 234, 423–439 (2018). https://doi.org/10.1007/s10958-018-4020-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-018-4020-9

Navigation