Abstract
A maximum principle is obtained for solutions of parabolic equations of the form
where
Similar content being viewed by others
References
V. A. Vasiliev, Yu. M. Romanovskii, and V. G. Yakhno, Autowave Processes [in Russian], Nauka, Moscow (1987).
A. M. Il’yin, A. S. Kalashnikov, and O. A. Oleinik, “Second-order linear equations of parabolic type,” Usp. Mat. Nauk, 17, No. 3, 3–146 (1962).
V. A. Kondratiev, “Asymptotic behavior of solutions of second-order nonlinear parabolic equations,” Tr. MIAN, 260, 180–192 (2008).
V. A. Kondratiev and E. M. Landis, “Qualitative theory of linear second-order partial differential equations,” Itogi Nauki Tekh. Ser. Sovr. Probl. Mat., 32, 99–215 (1988).
A. A. Kon’kov, “Solutions of nonautonomous ordinary differential equations,” Izv. Ross. Akad. Nauk, Ser. Mat., 65, No. 2, 81–126 (2001).
A. A. Kon’kov, “Stabilization of solutions of the nonlinear Fokker–Planck equation,” Tr. Semin. Petrovskogo, 29, 333–345 (2013).
A. A. Kon’kov, “On the asymptotic behaviour of solutions of nonlinear parabolic equations,” Proc. Roy. Soc. Edinburgh, 136, 365–384 (2006).
O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type [in Russian], Nauka, Moscow (1967).
E. M. Landis, Second-Order Elliptic and Parabolic Equations [in Russian], Nauka, Moscow (1971).
S. Täcklind, “Sur les classes quasianalytiques des solutions des équations aux dérivêes partielles du type parabolique,” Nova Acta Soc. Sci. Uppsal., Ser. 10, 4, No. 3, 1–57 (1936).
A. N. Tikhonov, “Uniqueness theorems for the heat equation,” Mat. Sb., 42, No. 2, 199–216 (1935).
E. Holmgren, “Sur les solutions quasianalytiques de l’équation de la chaleur,” Ark. Mat., 18, 1–9 (1924).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated from Trudy Seminara imeni I. G. Petrovskogo, No. 31, pp. 63–86, 2016.
Rights and permissions
About this article
Cite this article
Kon’kov, A.A. Maximum Principle for Nonlinear Parabolic Equations. J Math Sci 234, 423–439 (2018). https://doi.org/10.1007/s10958-018-4020-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10958-018-4020-9