## Abstract

A solution of the following difference equation is investigated:

where *x*_{−(k+1)}*; x*_{−k}*; : : : ; x*_{−1}*; x*_{0} 𝜖 (0*;∞*) and *k* = 0*;* 1*;* 2*; : : :* .

### Similar content being viewed by others

## References

A. M. Amleh, E. A. Grove, G. Ladas, and D. A. Georgiou, “On the recursive sequence \( {y}_{n+1}=\upalpha +\frac{yn-1}{yn},{}^{"} \)

*J. Math. Anal. Appl.*,**233**, 790–798 (1999).C. Cinar, “On the positive solutions of the difference equation \( {x}_{n+1}=\frac{x_{n-1}}{1+{ax}_n{x}_{n-1}} \),”

*Appl. Math. Comp.*,**158**, No. 3, 809–812 (2004).C. Cinar, “On the positive solutions of the difference equation \( {x}_{n+1}=\frac{x_{n-1}}{-1+{ax}_n{x}_{n-1}} \),”

*Appl. Math. Comp.*,**158**, No. 3, 793–797 (2004).C. Cinar, “On the positive solutions of the difference equation \( {x}_{n+1}=\frac{ax_{n-1}}{-1+{bx}_n{x}_{n-1}} \),”

*Appl. Math. Comp.*,**156**, No. 3, 587–590 (2004).E. M. Elabbasy, H. El-Metwally, and E. M. Elsayed, “On the difference equation \( {x}_{n+1}={ax}_n-\frac{bx_n}{cx_n-{dx}_{n-1}} \),”

*Adv. in Differ. Equ.*,**2006**, 1–10 (2006).E. M. Elabbasy, H. El-Metwally, E. M. Elsayed, “Qualitative behavior of higher order difference equation,”

*Soochow J. of Math.*,**33**, No. 4, 861–873 (2007).E. M. Elabbasy, H. El-Metwally, and E. M. Elsayed, “Global attractivity and periodic character of a fractional difference equation of order three,”

*Yokohama Math. J.*,**53**, 89–100 (2007).E. M. Elabbasy, H. El-Metwally, and E. M. Elsayed, “On the difference equation \( {x}_{n+1}=\frac{\upalpha {x}_{n-1}}{\upbeta +\upgamma \prod \limits_{i=0}^k{x}_{n-i}} \),”

*J. Comp. Appl. Math.*,**5**, No. 2, 101–113 (2007).E. M. Elabbasy and E. M. Elsayed, “On the global attractivity of difference equation of higher order,”

*Carpath. J. of Math.*,**24**, No. 2, 45–53 (2008).E. M. Elsayed, “On the solution of recursive sequence of order two,”

*Fasciculi Math.*,**40**, 5–13 (2008).E. M. Elsayed, “Dynamics of a recursive sequence of higher order,”

*Comm. Appl. Nonlin. Anal.*,**16**, No. 2, 37–50 (2009).E. M. Elsayed, “Solution and atractivity for a rational recursive sequence,”

*Discrete Dyn. in Nat. and Soc.*,**2011**, 1–17 (2011).E. M. Elsayed, “On the solution of some difference equation,”

*Europ. J. of Pure and Appl. Math.*,**4**, No. 3, 287–303 (2011).E. M. Elsayed, “On the dynamics of a higher order rational recursive sequence,”

*Comm. in Math. Anal.*,**12**, No. 1, 117–133 (2012).E. M. Elsayed, “Solution of rational difference system of order two,”

*Math. and Comp. Model.*,**55**, 378–384 (2012).C. H. Gibbons, M. R. S. Kulenović, and G. Ladas, “On the recursive sequence \( {x}_{n+1}=\frac{\alpha +\beta {\mathrm{x}}_{n-1}}{\upchi +{\mathrm{x}}_n} \),”

*Math. Sci. Res. Hot-Line*,**4**, No. 2, 1–11 (2000).M. R. S. Kulenović, G. Ladas, and W.S. Sizer, “On the recursive sequence \( {x}_{n+1}=\frac{\alpha {x}_n+\beta {x}_{n-1}}{\upchi {x}_n+\delta {x}_{n-1}} \),”

*Math. Sci. Res. Hot-Line*,**2**, No. 5, 1–16 (1998).S. Stevic, “On the recursive sequence \( {x}_{n+1}=\frac{x_{n-1}}{g\left({x}_n\right)} \) ,”

*Taiwanese J. Math*.,**6**, No. 3, 405–414 (2002).D. Simsek, C. Çınar, and İ. Yalçınkaya, “On the recursive sequence \( {x}_{n+1}=\frac{x_{n-3}}{1+{x}_{n-1}} \),”

*Int. J. Contemp. Math. Sci*.,**1**, No. 9–12, 475–480 (2006).D. Simsek, C. Çınar, R. Karataş, and İ. Yalçınkaya, “On the recursive sequence \( {x}_{n+1}=\frac{x_{n-5}}{1+{x}_{n-2}} \),”

*Int. J Pure Appl. Math.*,**27**, No. 4, 501–507 (2006).D. Simsek, C. Çınar, R. Karataş, and İ. Yalçınkaya, “On the recursive sequence \( {x}_{n+1}=\frac{x_{n-5}}{1+{x}_{n-1}{x}_{n-3}} \),”

*Int. J. Pure Appl. Math.*,**28**, No. 1, 117–124 (2006).D. Simsek, C. Çınar, and İ. Yalçınkaya, “On the recursive sequence

*x*(*n*+ 1) =*x*[*n −*(5*k*+ 9)]*/*1 +*x*(*n −*4)*x*(*n −*9)*. . . x*[*n −*(5*k*+ 4)],”*Taiwanese J. of Math.*,**12**, No. 5, 1087–1098 (2008).D. Simsek and A. Doğan, “On a class of recursive sequence,”

*Manas J. of Engin.*,**2**, No. 1, 16–22 (2014).D. Simsek and M. Eröz, “Solutions of the rational difference equations \( {x}_{n+1}=\frac{x_{n-3}}{1+{x}_n{x}_{n-1}{x}_{n-2}} \),”

*Manas J. of Engin.*,**4**, No. 1, 12–20 (2016).D. Simsek and F. Abdullayev, “On the recursive sequence \( {x}_{n+1}=\frac{x_{n-\left(4k+3\right)}}{1+\prod \limits_{t=0}^2{x}_{n-\left(k+1\right)t-k}} \),”

*Ukr. Math. Bull.*,**13**, No. 3, 376–387 (2016).I. Yalcinkaya, B. D. Iricanin, and C. Cinar, “On a max-type difference equation,”

*Discrete Dyn. in Nat. and Soc.*,**2007**, 1–10 (2007), doi: 1155/2007/47264.H. D. Voulov, “Periodic solutions to a difference equation with maximum,”

*Proc. Am. Math. Soc*.,**131**, No. 7, 2155–2160 (2002).X. Yang, B. Chen, G. M. Megson, and D. J. Evans, “Global attractivity in a recursive sequence,”

*Appl. Math. Comput.*,**158**, 667–682 (2004).

## Author information

### Authors and Affiliations

### Corresponding author

## Additional information

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 14, No. 4, pp. 564–574 October–December, 2017.

## Rights and permissions

## About this article

### Cite this article

Simsek, D., Abdullayev, F.G. On the Recursive Sequence \( {x}_{n+1}=\frac{x_{n-\left(k+1\right)}}{1+{x}_n{x}_{n-1}\dots {x}_{n-k}} \).
*J Math Sci* **234**, 73–81 (2018). https://doi.org/10.1007/s10958-018-3982-y

Received:

Published:

Issue Date:

DOI: https://doi.org/10.1007/s10958-018-3982-y