Abstract
We describe the current state of the theory of equations with m-Hessian stationary and evolution operators. It is quite important that new algebraic and geometric notions appear in this theory. In the present work, a list of those notions is provided. Among them, the notion of m-positivity of matrices is quite important; we provide a proof of an analog of Sylvester’s criterion for such matrices. From this criterion, we easily obtain necessary and sufficient conditions for existence of classical solutions of the first initial boundary-value problem for m-Hessian evolution equations. The asymptotic behavior of m-Hessian evolutions in a semibounded cylinder is considered as well.
Similar content being viewed by others
References
L. Caffarelli, L. Nirenberg, and J. Spruck, “The Dirichlet problem for nonlinear second order elliptic equations, III. Functions of the eigenvalues of the Hessian,” Acta Math., 155, 261–301 (1985).
K.-S. Chou and X.-J. Wang, “A variational theory of the Hessian equations,” Commun. Pure Appl. Math., 54, 1029–1064 (2001).
L.C. Evans, “Classical solutions of fully nonlinear convex second order elliptic equations,” Commun. Pure Appl. Math., 25, 333–363 (1982).
N. V. Filimonenkova, “On the classical solvability of the Dirichlet problem for nondegenerate m-Hessian equations,” J. Math. Sci. (N. Y.), 178, No. 6, 666–694 (2011).
N. V. Filimonenkova, Sylvester’s criterion for m-positive matrices, St. Petersburg Math. Soc., Preprint No. 7, St. Petersburg (2014).
L. Gårding, “An inequality for hyperbolic polynomials,” J. Math. Mech., 8, 957–965 (1959).
G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge (1934).
N. M. Ivochkina, “The integral method of barrier functions and the Dirichlet problem for equations with operators of the Monge–Ampère type,” Mat. Sb. (N.S.), 112 (154), No. 2 (6), 193–206 (1980).
N. M. Ivochkina, “Description of cones of stability generated by differential operators of Monge–Ampère type,” Mat. Sb. (N.S.), 122 (164), No. 2, 265–275 (1983).
N. M. Ivochkina, “The Dirichlet problem for the curvature equation of order m,” Leningrad Math. J., 2, No. 3, 631–654 (1991).
N. M. Ivochkina, “On the Dirichlet problem for fully nonlinear parabolic equations,” J. Math. Sci. (N. Y.), 93, No. 5, 689–696 (1999).
N. M. Ivochkina, “Mini survey of the principal notions in the theory of fully nonlinear elliptic second-order differential equations,” J. Math. Sci. (N. Y.), 101, No. 5, 3503–3511 (2000).
N. M. Ivochkina, “Weakly first-order interior estimates and Hessian equations,” J. Math. Sci. (N. Y.), 143, No. 2, 2875–2882 (2007).
N.M. Ivochkina, “On approximate solutions to the first initial-boundary value problem for the m-Hessian evolution equations,” J. Fixed Point Theory Appl., 4, No. 1, 47–56 (2008).
N. M. Ivochkina, “On classic solvability of the m-Hessian evolution equation,” Amer. Math. Soc. Transl. Ser. 2, 229, 119–129 (2010).
N. M. Ivochkina, “On some properties of the positive m-Hessian operators in C 2(Ω),” J. Fixed Point Theory Appl., 14, No. 1, 79–90 (2014).
N. M. Ivochkina, “From Gårding cones to p-convex hypersurfaces,” J. Math. Sci. (N. Y.), 201, No. 5, 634–644 (2014).
N. M. Ivochkina and N. V. Filimonenkova, “On the backgrounds of the theory of m-Hessian equations,” Commun. Pure Appl. Anal., 12, No. 4, 1687–1703 (2013).
N. M. Ivochkina and N. V. Filimonenkova, “On algebraic and geometric conditions in the theory of Hessian equations,” J. Fixed Point Theory Appl., 16, No. 1-2, 11–25 (2014).
N. M. Ivochkina and N. V. Filimonenkova, “On attractors of m-Hessian evolutions,” J. Math. Sci. (N. Y.), 207, No. 2, 226–235 (2015).
N. M. Ivochkina and O. A. Ladyzhenskaya, “On parabolic problems generated by some symmetric functions of the Hessian,” Topol. Methods Nonlinear Anal., 4, 19–29 (1994).
N.M. Ivochkina, N. Trudinger, and X.-J. Wang, “The Dirichlet problem for degenerate Hessian equations,” Commun. Part. Differ. Equ., 29, 219–235 (2004).
N.M. Ivochkina, G.V. Yakunina, and S. I. Prokof’eva, “The Gårding cones in the modern theory of fully nonlinear second order differential equations,” J. Math. Sci. (N. Y.), 184, No. 3, 295–315 (2012).
N. V. Krylov, “Boundedly inhomogeneous elliptic and parabolic equations in a domain,” Izv. Akad. Nauk SSSR Ser. Mat., 47, No. 1, 75–108 (1983).
N. V. Krylov, Nonlinear Second-Order Elliptic and Parabolic Equations [in Russian], Nauka, Moscow (1985).
G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge (1996).
M. Lin and N. Trudinger, “On some inequalities for elementary symmetric functions,” Bull. Aust. Math. Soc., 50, 317–326 (1994).
S. I. Prokof’eva and G.V. Yakunina, “On the concept of ellipticity for second-order fully nonlinear partial differential equations,” Differ. Uravn. Prots. Upr., No. 1, 142–145 (2012).
M. V. Safonov, “Smoothness near the boundary of solutions of elliptic Bellman equations,” Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 147, No. 17, 150–154 (1985).
N. Trudinger, “On the Dirichlet problem for Hessian equations,” Acta Math., 175, 151–164 (1995).
N. Trudinger and X.-J. Wang, “A Poincaré type inequality for Hessian integrals,” Calc. Var. Part. Differ. Equ., 6, 315–328 (1998).
K. Tso, “On an Aleksandrov–Bakel’man type maximum principle for second-order parabolic equations,” Commun. Part. Differ. Equ., 10, 543–553 (1985).
X.-J. Wang, “A class of fully nonlinear elliptic equations and related functionals,” Indiana Univ. Math. J., 43, 25–54 (1994).
X.-J. Wang, “The k-Hessian equation,” Lecture Notes in Math., 1977, 177–252 (2009).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 58, Proceedings of the Seventh International Conference on Differential and Functional Differential Equations and InternationalWorkshop “Spatio-Temporal Dynamical Systems” (Moscow, Russia, 22–29 August, 2014). Part 1, 2015.
Rights and permissions
About this article
Cite this article
Ivochkina, N.M., Filimonenkova, N.V. On New Structures in the Theory of Fully Nonlinear Equations. J Math Sci 233, 480–494 (2018). https://doi.org/10.1007/s10958-018-3939-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10958-018-3939-1