Skip to main content
Log in

On New Structures in the Theory of Fully Nonlinear Equations

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We describe the current state of the theory of equations with m-Hessian stationary and evolution operators. It is quite important that new algebraic and geometric notions appear in this theory. In the present work, a list of those notions is provided. Among them, the notion of m-positivity of matrices is quite important; we provide a proof of an analog of Sylvester’s criterion for such matrices. From this criterion, we easily obtain necessary and sufficient conditions for existence of classical solutions of the first initial boundary-value problem for m-Hessian evolution equations. The asymptotic behavior of m-Hessian evolutions in a semibounded cylinder is considered as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Caffarelli, L. Nirenberg, and J. Spruck, “The Dirichlet problem for nonlinear second order elliptic equations, III. Functions of the eigenvalues of the Hessian,” Acta Math., 155, 261–301 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  2. K.-S. Chou and X.-J. Wang, “A variational theory of the Hessian equations,” Commun. Pure Appl. Math., 54, 1029–1064 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  3. L.C. Evans, “Classical solutions of fully nonlinear convex second order elliptic equations,” Commun. Pure Appl. Math., 25, 333–363 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  4. N. V. Filimonenkova, “On the classical solvability of the Dirichlet problem for nondegenerate m-Hessian equations,” J. Math. Sci. (N. Y.), 178, No. 6, 666–694 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  5. N. V. Filimonenkova, Sylvester’s criterion for m-positive matrices, St. Petersburg Math. Soc., Preprint No. 7, St. Petersburg (2014).

  6. L. Gårding, “An inequality for hyperbolic polynomials,” J. Math. Mech., 8, 957–965 (1959).

    MathSciNet  Google Scholar 

  7. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge (1934).

  8. N. M. Ivochkina, “The integral method of barrier functions and the Dirichlet problem for equations with operators of the Monge–Ampère type,” Mat. Sb. (N.S.), 112 (154), No. 2 (6), 193–206 (1980).

  9. N. M. Ivochkina, “Description of cones of stability generated by differential operators of Monge–Ampère type,” Mat. Sb. (N.S.), 122 (164), No. 2, 265–275 (1983).

  10. N. M. Ivochkina, “The Dirichlet problem for the curvature equation of order m,Leningrad Math. J., 2, No. 3, 631–654 (1991).

  11. N. M. Ivochkina, “On the Dirichlet problem for fully nonlinear parabolic equations,” J. Math. Sci. (N. Y.), 93, No. 5, 689–696 (1999).

    Article  MathSciNet  Google Scholar 

  12. N. M. Ivochkina, “Mini survey of the principal notions in the theory of fully nonlinear elliptic second-order differential equations,” J. Math. Sci. (N. Y.), 101, No. 5, 3503–3511 (2000).

    Article  MathSciNet  Google Scholar 

  13. N. M. Ivochkina, “Weakly first-order interior estimates and Hessian equations,” J. Math. Sci. (N. Y.), 143, No. 2, 2875–2882 (2007).

    Article  MathSciNet  Google Scholar 

  14. N.M. Ivochkina, “On approximate solutions to the first initial-boundary value problem for the m-Hessian evolution equations,” J. Fixed Point Theory Appl., 4, No. 1, 47–56 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  15. N. M. Ivochkina, “On classic solvability of the m-Hessian evolution equation,” Amer. Math. Soc. Transl. Ser. 2, 229, 119–129 (2010).

    MathSciNet  MATH  Google Scholar 

  16. N. M. Ivochkina, “On some properties of the positive m-Hessian operators in C 2(Ω),J. Fixed Point Theory Appl., 14, No. 1, 79–90 (2014).

    Article  Google Scholar 

  17. N. M. Ivochkina, “From Gårding cones to p-convex hypersurfaces,” J. Math. Sci. (N. Y.), 201, No. 5, 634–644 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  18. N. M. Ivochkina and N. V. Filimonenkova, “On the backgrounds of the theory of m-Hessian equations,” Commun. Pure Appl. Anal., 12, No. 4, 1687–1703 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  19. N. M. Ivochkina and N. V. Filimonenkova, “On algebraic and geometric conditions in the theory of Hessian equations,” J. Fixed Point Theory Appl., 16, No. 1-2, 11–25 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  20. N. M. Ivochkina and N. V. Filimonenkova, “On attractors of m-Hessian evolutions,” J. Math. Sci. (N. Y.), 207, No. 2, 226–235 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  21. N. M. Ivochkina and O. A. Ladyzhenskaya, “On parabolic problems generated by some symmetric functions of the Hessian,” Topol. Methods Nonlinear Anal., 4, 19–29 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  22. N.M. Ivochkina, N. Trudinger, and X.-J. Wang, “The Dirichlet problem for degenerate Hessian equations,” Commun. Part. Differ. Equ., 29, 219–235 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  23. N.M. Ivochkina, G.V. Yakunina, and S. I. Prokof’eva, “The Gårding cones in the modern theory of fully nonlinear second order differential equations,” J. Math. Sci. (N. Y.), 184, No. 3, 295–315 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  24. N. V. Krylov, “Boundedly inhomogeneous elliptic and parabolic equations in a domain,” Izv. Akad. Nauk SSSR Ser. Mat., 47, No. 1, 75–108 (1983).

    MathSciNet  Google Scholar 

  25. N. V. Krylov, Nonlinear Second-Order Elliptic and Parabolic Equations [in Russian], Nauka, Moscow (1985).

  26. G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge (1996).

  27. M. Lin and N. Trudinger, “On some inequalities for elementary symmetric functions,” Bull. Aust. Math. Soc., 50, 317–326 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  28. S. I. Prokof’eva and G.V. Yakunina, “On the concept of ellipticity for second-order fully nonlinear partial differential equations,” Differ. Uravn. Prots. Upr., No. 1, 142–145 (2012).

  29. M. V. Safonov, “Smoothness near the boundary of solutions of elliptic Bellman equations,” Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 147, No. 17, 150–154 (1985).

  30. N. Trudinger, “On the Dirichlet problem for Hessian equations,” Acta Math., 175, 151–164 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  31. N. Trudinger and X.-J. Wang, “A Poincaré type inequality for Hessian integrals,” Calc. Var. Part. Differ. Equ., 6, 315–328 (1998).

    Article  MATH  Google Scholar 

  32. K. Tso, “On an Aleksandrov–Bakel’man type maximum principle for second-order parabolic equations,” Commun. Part. Differ. Equ., 10, 543–553 (1985).

    Article  MATH  Google Scholar 

  33. X.-J. Wang, “A class of fully nonlinear elliptic equations and related functionals,” Indiana Univ. Math. J., 43, 25–54 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  34. X.-J. Wang, “The k-Hessian equation,” Lecture Notes in Math., 1977, 177–252 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Ivochkina.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 58, Proceedings of the Seventh International Conference on Differential and Functional Differential Equations and InternationalWorkshop “Spatio-Temporal Dynamical Systems” (Moscow, Russia, 22–29 August, 2014). Part 1, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivochkina, N.M., Filimonenkova, N.V. On New Structures in the Theory of Fully Nonlinear Equations. J Math Sci 233, 480–494 (2018). https://doi.org/10.1007/s10958-018-3939-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-018-3939-1

Navigation