Skip to main content
Log in

Low-Dimensional and Multi-Dimensional Pendulums in Nonconservative Fields. Part 2

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this review, we discuss new cases of integrable systems on the tangent bundles of finite-dimensional spheres. Such systems appear in the dynamics of multidimensional rigid bodies in non-conservative fields. These problems are described by systems with variable dissipation with zero mean. We found several new cases of integrability of equations of motion in terms of transcendental functions (in the sense of the classification of singularities) that can be expressed as finite combinations of elementary functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. R. Aidagulov and M. V. Shamolin, “A certain improvement of Conway algorithm,” Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 3, 53–55 (2005).

    MATH  Google Scholar 

  2. R. R. Aidagulov and M. V. Shamolin, “Phenomenological approach to definition of interphase forces,” Dokl. Ross. Akad. Nauk, 412, No. 1, 44–47 (2007).

    Google Scholar 

  3. R. R. Aidagulov and M. V. Shamolin, “Archimedean uniform structure,” Sovr. Mat. Fundam. Napr., 23, 46–51 (2007).

    Google Scholar 

  4. R. R. Aidagulov and M. V. Shamolin, “General spectral approach to continuous medium dynamics,” Sovr. Mat. Fundam. Napr., 23, 52–70 (2007).

    Google Scholar 

  5. R. R. Aidagulov and M. V. Shamolin, “Varieties of continuous structures,” Sovr. Mat. Fundam. Napr., 23, 71–86 (2007).

    Google Scholar 

  6. R. R. Aidagulov and M. V. Shamolin, “Groups of colors,” in: Sovr. Mat. Prilozh., 62, 15–27 (2009).

  7. R. R. Aidagulov and M. V. Shamolin, “Pseudodifferential operators in the theory of multiphase, multi-rate flows,” Sovr. Mat. Prilozh., 65, 11–30 (2009).

    MATH  Google Scholar 

  8. R. R. Aidagulov and M. V. Shamolin, “Averaging operators and real equations of hydromechanics,” Sovr. Mat. Prilozh., 65, 31–47 (2009).

    MATH  Google Scholar 

  9. R. R. Aidagulov and M. V. Shamolin, “Integration formulas of tenth order and higher,” Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 4, 3–7 (2010).

    MathSciNet  MATH  Google Scholar 

  10. A. V. Andreev and M. V. Shamolin, “Mathematical modeling of a medium interaction onto rigid body and new two-parametric family of phase portraits,” Vestn. Samar. Univ. Estestv. Nauki, No. 10 (121), 109–115 (2014).

  11. A. A. Andronov, Collection of Works [in Russian], Izd. Akad. Nauk SSSR, Moscow (1956).

  12. A. A. Andronov and L. S. Pontryagin, “Rough systems,” Dokl. Akad. Nauk SSSR, 14, No. 5, 247–250 (1937).

    Google Scholar 

  13. A. A. Andronov, A. A. Vitt, and S. E. Khaikin, Oscillation Theory [in Russian], Nauka, Moscow (1981).

  14. D. V. Anosov, “Geodesic flows on closed Riemannian manifolds of negative curvature,” Tr. Mat. Inst. Akad. Nauk SSSR, 90 (1967).

  15. P. Appel, Theoretical Mechanics [Russian translation], Vols. I, II, Fizmatgiz, Moscow (1960).

  16. V. I. Arnold, “Hamiltonian property of Euler equations of rigid body dynamics in an ideal fluid,” Usp. Mat. Nauk, 24, No. 3, 225–226 (1969).

    Google Scholar 

  17. V. I. Arnold, Mathematical Methods of Classical Mechanics [in Russian], Nauka, Moscow (1989).

  18. V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, “Mathematical aspects of classical and celestial mechanics,” in: Progress in Science and Technology, Series on Contemporary Problems in Mathematics, Fundamental Direction [in Russian], 3, All-Union Institute for Scientific and Technical Information (VINITI), Moscow (1985).

  19. N. N. Bautin and E. A. Leontovich, Methods and Tools for Qualitative Study of Dynamical Systems on the Plane [in Russian], Nauka, Moscow (1976).

  20. V. V. Beletskii, Artificial Satellite Motion with Respect to Center of Mass [in Russian], Nauka, Moscow (1965).

  21. A. V. Belyaev, “On many-dimensional body motion with clumped point in gravity force field,” Mat. Sb., 114, No. 3, 465–470 (1981).

    MathSciNet  Google Scholar 

  22. I. Bendixon, “On curves defined by differential equations,” Usp. Mat. Nauk, 9 (1941).

  23. M. Berger, Geometry [Russian translation], Vols. I, II, Mir, Moscow (1984).

  24. A. L. Besse, Manifolds with Closed Geodesics [Russian translation], Mir, Moscow (1981).

  25. Yu. K. Bivin, V. V. Viktorov, and L. L. Stepanov, “Study of rigid body motion in a clayey medium,” Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 2, 159–165 (1978).

  26. Yu. K. Bivin, Yu. M. Glukhov, and Yu. V. Permyakov, “Vertical entrance of rigid bodies into water,” Izv. Akad. Nauk SSSR. Mekh. Zhidkosti Gaza, No. 6, 3–9 (1985).

  27. G. D. Birkhoff, Dynamical Systems [Russian translation], Gostekhizdat, Moscow–Leningrad (1941).

  28. R. L. Bishop, Oscillations [Russian translation], Nauka, Moscow (1986).

  29. G. A. Bliss, Lectures on the Calculus of Variations [Russian translation], Gostekhizdat, Moscow (1941).

  30. O. I. Bogoyavlenskii, Methods of Qualitative Theory of Dynamical Systems in Astrophysics and Gas Dynamics [in Russian], Nauka, Moscow (1980).

  31. O. I. Bogoyavlenskii, “Some integrable cases of Euler equation,” Dokl. Akad. Nauk SSSR, 287, No. 5, 1105–1108 (1986).

    MathSciNet  Google Scholar 

  32. O. I. Bogoyavlenskii and G. F. Ivakh, “Topological analysis of integrable cases of V. A. Steklov,” Usp. Mat. Nauk, 40, No. 4, 145–146 (1985).

    Google Scholar 

  33. G. L. Boiko and V. A. Eroshin, “Finding overloadings under a shock profile on fluid surface,” Izv. Akad. Nauk SSSR. Mekh. Zhidkosti Gaza, No. 1, 35–38 (1975).

  34. I. T. Borisenok and M. V. Shamolin, “Solution of differential diagnosis problem,” Fundam. Prikl. Mat., 5, No. 3, 775–790 (1999).

    MathSciNet  MATH  Google Scholar 

  35. I. T. Borisenok and M. V. Shamolin, “Solution of differential diagnosis problem by statistical trial method,” Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., No. 1, 29–31 (2001).

  36. A. V. Brailov, “Some cases of complete integrability of Euler equations and applications,” Dokl. Akad. Nauk SSSR, 268, No. 5, 1043–1046 (1983).

    MathSciNet  MATH  Google Scholar 

  37. A. D. Bryuno, Local Method of Nonlinear Analysis of Differential Equations [in Russian], Nauka, Moscow (1979).

  38. N. Bourbaki, Integration [Russian translation], Nauka, Moscow (1970).

  39. N. Bourbaki, Lie Groups and Algebras [Russian translation], Mir, Moscow (1972).

  40. A. A. Burov and G. I. Subkhankulov, “On rigid body motion in magnetic field,” Prikl. Mat. Mekh., 50, No. 6, 960–966 (1986).

    Google Scholar 

  41. G. S. Byushgens and R. V. Studnev, Dynamics of Longitudinal and Lateral Motion [in Russian], Mashinostroenie, Moscow (1969).

  42. G. S. Byushgens and R. V. Studnev, Airplane Dynamics. Spatial Motion [in Russian], Mashinostroenie, Moscow (1988).

  43. M. L. Byalyi, “On first integrals polynomial in impulses for a mechanical system on a two-dimensional torus,” Funkts. Anal. Prilozh., 21, No. 4, 64–65 (1987).

    MathSciNet  MATH  Google Scholar 

  44. Ch. J. de la Vallée Poussin, Lectures on Theoretical Mechanics [Russian translation], Vols. I, II, IL, Moscow (1948, 1949).

  45. S. V. Vishik and S. F. Dolzhanskii, “Analogs of Euler–Poisson equations and magnetoelectrodynamics related to Lie groups,” Dokl. Akad. Nauk SSSR, 238, No. 5, 1032–1035.

  46. F. R. Gantmakher, Lectures on Analytical Mechanics [in Russian], Nauka, Moscow (1960).

  47. D. V. Georgievskii and M. V. Shamolin, “Kinematics and mass geometry of a rigid body with a fixed point in ℝn,” Dokl. Ross. Akad. Nauk, 380, No. 1, 47–50 (2001).

    MathSciNet  Google Scholar 

  48. D. V. Georgievskii and M. V. Shamolin, “Generalized dynamical Euler equations for a rigid body with a fixed point in ℝn,” Dokl. Ross. Akad. Nauk, 383, No. 5, 635–637 (2002).

    Google Scholar 

  49. D. V. Georgievskii and M. V. Shamolin, “First integrals of equations of motion for a generalized gyroscope in ℝn,” Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., No. 5, 37–41 (2003).

  50. D. V. Georgievskii and M. V. Shamolin, “Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, ‘Topical problems of geometry and mechanics’ named after V. V. Trofimov,” Sovr. Mat. Prilozh., 65, 3–10 (2009).

    MATH  Google Scholar 

  51. D. V. Georgievskii and M. V. Shamolin, “Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University, ‘Topical problems of geometry and mechanics’ named after V. V. Trofimov,” Sovr. Mat. Prilozh., 76, 3–10 (2012).

    MATH  Google Scholar 

  52. D. V. Georgievskii and M. V. Shamolin, “Levi-Civita symbols, generalized vector products, and new integrable cases in mechanics of multidimensional bodies,” Sovr. Mat. Prilozh., 76, 22–39 (2012).

    MathSciNet  MATH  Google Scholar 

  53. E. B. Gledzer, F. S. Dolzhanskii, and A. M. Obukhov, Systems of Hydrodynamic Type and Their Applications [in Russian], Nauka, Moscow (1981).

  54. C. Godbillon, Differential Geometry and Analytical Mechanics [Russian translation], Mir, Moscow (1973).

  55. V. V. Golubev, Lectures on Analytical Theory of Differential Equations [in Russian], Gostekhizdat, Moscow (1950).

  56. V. V. Golubev, Lectures on Integrating Equations of Heavy Body Motion around a Fixed Point [in Russian], Gostekhizdat, Moscow–Leningrad (1953).

  57. P. Griffits, Exterior Differential Systems and the Calculus of Variations [Russian translation], Mir, Moscow (1986).

  58. D. M. Grobman, “Topological classification of neighborhoods of a singular point in n-dimensional space,” Mat. Sb., 56, No. 1, 77–94 (1962).

    MathSciNet  Google Scholar 

  59. M. I. Gurevich, Jet Theory of Ideal Fluid [in Russian], Nauka, Moscow (1979).

  60. B. A. Dubrovin and S. P. Novikov, “On Poisson brackets of hydrodynamic type,” Dokl. Akad. Nauk SSSR, 279, No. 2, 294–297 (1984).

    MathSciNet  MATH  Google Scholar 

  61. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry. Theory and Applications [in Russian], Nauka, Moscow (1979).

  62. V. A. Eroshin, “Plate reflection from ideal incompressible fluid surface,” Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., No. 6, 99–104 (1970).

  63. V. A. Eroshin, “Submergence of a disk in a compressible fluid at an angle to a free surface,” Izv. Akad. Nauk SSSR, Mekh. Zhidkosti Gaza, No. 2, 142–144 (1983).

  64. V. A. Eroshin, V. A. Samsonov, and M. V. Shamolin, “Model problem of body drag in a resisting medium under streamline flow-around,” Izv. Ross. Akad. Nauk. Mekh. Zhidkosti Gaza, No. 3, 23–27 (1995).

  65. V. A. Eroshin, G. A. Konstantinov, N. I. Romanenkov, and Yu. L. Yakimov, “Experimental finding of pressure on a disk under its submergence in a compressible fluid at an angle to a free surface,” Izv. Akad. Nauk SSSR. Mekh. Zhidkosti Gaza, No. 2, 21–25 (1988).

  66. V. A. Eroshin, N. I. Romanenkov, I. V. Serebryakov, and Yu. L. Yakimov, “Hydrodynamic forces under a shock of blunt bodies on compressible fluid surface,” Izv. Akad. Nauk SSSR. Mekh. Zhidkosti Gaza, No. 6, 44–51 (1980).

  67. N. E. Zhukovskii, “On a fall of light oblong bodies rotating around their longitudinal axis,” in: Complete Collection of Works [in Russian], Vol. 5, Fizmatgiz, Moscow (1937), pp. 72–80, 100–115.

  68. N. E. Zhukovskii, “On bird soaring,” in: Complete Collection of Works [in Russian], Vol. 5, Fizmatgiz, Moscow (1937), pp. 49–59.

  69. H. Seifert and W. Threifall, Topology [Russian translation], Gostekhizdat, Moscow–Leningrad (1938).

  70. T. A. Ivanova, “On Euler equations in models of theoretical physics,” Mat. Zametki, 52, No. 2, 43–51 (1992).

    MathSciNet  Google Scholar 

  71. A. Yu. Ishlinsky, Orientation, Gyroscopes, and Inertial Navigation [in Russian], Nauka, Moscow (1976).

  72. V. V. Kozlov, Qualitative Analysis Methods in Rigid Body Dynamics [in Russian], Izd. Mosk. Univ., Moscow (1980).

  73. V. V. Kozlov, “Integrability and nonintegrability in Hamiltonian mechanics,” Usp. Mat. Nauk, 38, No. 1, 3–67 (1983).

    MathSciNet  Google Scholar 

  74. V. V. Kozlov, “On rigid body fall in ideal fluid,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 5, 10–17 (1989).

  75. V. V. Kozlov, “To problem of heavy rigid body fall in a resisting medium,” Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., No. 1, 79–87 (1990).

  76. G. Lamb, Hydrodynamics [Russian translation], Fizmatgiz, Moscow (1947).

  77. S. Lefschetz, Geometric Theory of Differential Equations [Russian translation], IL, Moscow (1961).

  78. J. U. Leech, Classical Mechanics [Russian translation], IL, Moscow (1961).

  79. B. Ya. Lokshin, V. A. Privalov, and V. A. Samsonov, An Introduction to Problem of Motion of a Body in a Resisting Medium [in Russian], Izd. Mosk. Univ., Moscow (1986).

  80. V. V. Lunev, “A hydrodynamical analogy of problem of rigid body motion with a fixed point in Lorenz force field,” Dokl. Akad. Nauk SSSR, 276, No. 2, 351–355 (1984).

    MathSciNet  Google Scholar 

  81. A. M. Lyapunov, “A new integrability case of equations of rigid body motion in a fluid,” in: Collection of Works [in Russian], Vol. I, Izd. Akad. Nauk SSSR, Moscow (1954), pp. 320–324.

  82. Yu. I. Manin, “Algebraic aspects of theory of nonlinear differential equations,” in: Progress in Science and Technology, Series on Contemporary Problems in Mathematics [in Russian], 11, All-Union Institute for Scientific and Technical Information, USSR Academy of Sciences, Moscow (1978), pp. 5–112.

  83. W. Miller, Symmetry and Separation of Variables [Russian translation], Mir, Moscow (1981).

  84. V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations [in Russian], Gostekhizdat, Moscow–Leningrad (1949).

  85. Z. Nitetski, Introduction to Differential Dynamics [Russian translation], Mir, Moscow (1975).

  86. V. A. Odareev, Decompositional Analysis of Dynamics and Stability of Longitudinal Perturbed Motion of the Ekranoplan [in Russian], Doctoral Dissertation, MGAI, Moscow (1995).

  87. Yu.M. Okunev and V. A. Sadovnichii, “Model dynamical systems of a certain problem of external ballistics and their analytical solutions,” in: Problems of Modern Mechanics [in Russian], Izd. Mosk. Univ., Moscow (1998), pp. 28–46.

  88. Yu. M. Okunev, V. A. Samsonov, B. Ya. Lokshin, M. Z. Dosaev, L. A. Klimina, Yu. D. Selyutskii, O. G. Privalova, M. V. Shamolin, and A. I. Kobrin, “Problems of control of motion of the bodies in a continuous medium,” in: Scientific Report of Institute of Mechanics, Moscow State University [in Russian], No. 5103, Institute of Mechanics, Moscow State University, Moscow (2010).

  89. Yu. M. Okunev and M. V. Shamolin, “On integrability in elementary functions of certain classes of complex nonautonomous equations,” Sovr. Mat. Prilozh., 65, 122–131 (2009).

    Google Scholar 

  90. J. Palis and W. De Melu, Geometric Theory of Dynamical Systems. An Introduction [Russian translation], Mir, Moscow (1986).

  91. A. M. Perelomov, “Several remarks on integration of equations of rigid body motion in ideal fluid,” Funkts. Anal. Prilozh., 15, No. 2, 83–85 (1981).

    Article  Google Scholar 

  92. N. L. Polyakov and M. V. Shamolin, “On closed symmetric functional classes preserving any single predicate,” Vestn. Sam. Univ. Estestv. Nauki, No. 6 (107), 61–73 (2013).

  93. N. L. Polyakov and M. V. Shamolin, “On a generalization of Arrows impossibility theorem,” Dokl. Ross. Akad. Nauk, 456, No. 2, 143–145 (2014).

    Google Scholar 

  94. N. V. Pokhodnya and M. V. Shamolin, “New integrable case in dynamics of a multidimensional body,” Vestn. Sam. Univ. Estestv. Nauki, No. 9 (100), 136–150 (2012).

  95. N. V. Pokhodnya and M. V. Shamolin, “Certain conditions of integrability of dynamical systems in transcendental functions,” Vestn. Sam. Univ. Estestv. Nauki, No. 9/1 (110), 35–41 (2013).

  96. N. V. Pokhodnya and M. V. Shamolin, “Integrable systems on the tangent bundle of a multidimensional sphere,” Vestn. Sam. Univ. Estestv. Nauki, No. 7 (118), 60–69 (2014).

  97. H. Poincaré, On Curves Defined by Differential Equations [Russian translation], OGIZ, Moscow–Leningrad (1947).

  98. H. Poincaré, “New methods in celestial mechanics,” in: Selected Works [Russian translation], Vols. 1, 2, Nauka, Moscow (1971, 1972).

  99. H. Poincaré, On Science [Russian translation], Nauka, Moscow (1983).

  100. V. A. Samsonov, Issues on Mechanics. Some Problems, Phenomena, and Paradoxes [in Russian], Nauka, Moscow (1980).

  101. V. A. Samsonov and M. V. Shamolin, “Problem on body motion in a resisting medium,” Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., No. 3, 51–54 (1989).

  102. V. A. Samsonov and M. V. Shamolin, “A model problem of body motion in a medium with streamline flow-around,” Scientific Report of Institute of Mechanics, Moscow State Univ. [in Russian], No. 3969, Institute of Mechanics, Moscow State Univ., Moscow (1990).

  103. V. A. Samsonov and M. V. Shamolin, “Problem of body drag in a medium under streamline flow-around,” in: Scientific Report of Institute of Mechanics, Moscow State Univ. [in Russian], No. 4141, Institute of Mechanics, Moscow State Univ., Moscow (1991).

  104. V. A. Samsonov, M. V. Shamolin, V. A. Eroshin, and V. M. Makarshin, “Mathematical modelling in problem of body drag in a resisting medium under streamline flow-around,” in: Scientific Report of Institute of Mechanics, Moscow State Univ. [in Russian], No. 4396, Institute of Mechanics, Moscow State Univ., Moscow (1995).

  105. L. I. Sedov, Mechanics of Continuous Media [in Russian], Vols. 1, 2, Nauka, Moscow (1983, 1984).

  106. N. Yu. Selivanova and M. V. Shamolin, “Local solvability of a certain problem with free boundary,” Vestn. Sam. Univ. Estestv. Nauki, No. 8 (89), 86–94 (2011).

  107. N. Yu. Selivanova and M. V. Shamolin, “Local solvability of a one-phase problem with free boundary,” Sovr. Mat. Prilozh., 78, 99–108 (2012).

    Google Scholar 

  108. N. Yu. Selivanova and M. V. Shamolin, “Studying the interphase zone in a certain singular-limit problem,” Sovr. Mat. Prilozh., 78, 109–118 (2012).

    MATH  Google Scholar 

  109. N. Yu. Selivanova and M. V. Shamolin, “Local solvability of the capillar problem,” Sovr. Mat. Prilozh., 78, 119–125 (2012).

    Google Scholar 

  110. N. Yu. Selivanova and M. V. Shamolin, “Quasi-stationary Stefan problem with values on front depending on its geometry,” Sovr. Mat. Prilozh., 78, 126–134 (2012).

    Google Scholar 

  111. J. L. Singh, Classical Dynamics [Russian translation], Fizmatgiz, Moscow (1963).

  112. S. Smale, “Differentiable dynamical systems,” Usp. Mat. Nauk, 25, No. 1, 113–185 (1970).

    MathSciNet  MATH  Google Scholar 

  113. V. A. Steklov, On Rigid Body Motion in a Fluid [in Russian], Kharkov (1893).

  114. G. K. Suslov, Theoretical Mechanics [in Russian], Gostekhizdat, Moscow (1946).

  115. V. V. Sychev, A. I. Ruban, Vik. V. Sychev, and G. L. Korolev, Asymptotic Theory of Separation Flows [in Russian], Nauka, Moscow (1987).

  116. V. G. Tabachnikov, “Stationary characteristics of wings in small velocities under whole range of attack angles,” in: Proc. Central Aero-Hydrodynamical Institute [in Russian], No. 1621, Moscow (1974), pp. 18–24.

  117. V. V. Trofimov, “Embeddings of finite groups in compact Lie groups by regular elements,” Dokl. Akad. Nauk SSSR, 226, No. 4, 785–786 (1976).

    MathSciNet  Google Scholar 

  118. V. V. Trofimov, “Euler equations on finite-dimensional solvable Lie groups,” Izv. Akad. Nauk SSSR, Ser. Mat., 44, No. 5, 1191–1199 (1980).

    MathSciNet  MATH  Google Scholar 

  119. V. V. Trofimov and M. V. Shamolin, “Geometrical and dynamical invariants of integrable Hamiltonian and dissipative systems,” Fundam. Prikl. Mat., 16, No. 4, 3–229 (2010).

    Google Scholar 

  120. E. T. Whittecker, Analytical Dynamics [Russian translation], ONTI, Moscow (1937).

  121. P. Hartman, Ordinary Differential Equations [Russian translation], Mir, Moscow (1970).

  122. S. A. Chaplygin, “On motion of heavy bodies in an incompressible fluid,” in: Complete Collection of Works [in Russian], Vol. 1, Izd. Akad. Nauk SSSR, Leningrad (1933), pp. 133–135.

  123. S. A. Chaplygin, Selected Works [in Russian], Nauka, Moscow (1976).

  124. M. V. Shamolin, Qualitative Analysis of a Model Problem of Body Motion in a Medium with Streamline Flow-Around [in Russian], Candidate Dissertation, Moscow Univ., Moscow (1991).

  125. M. V. Shamolin, “Closed trajectories of different topological types in problem of body motion in a medium with resistance,” Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., No. 2, 52–56 (1992).

  126. M. V. Shamolin, “Problem of body motion in a medium with resistance,” Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., No. 1, 52–58 (1992).

  127. M. V. Shamolin, “Classification of phase portraits in problem of body motion in a resisting medium in the presence of a linear damping moment,” Prikl. Mat. Mekh., 57, No. 4, 40–49 (1993).

    MathSciNet  Google Scholar 

  128. M. V. Shamolin, “Applications of Poincaré topographical system methods and comparison systems in some concrete systems of differential equations,” Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., No. 2, 66–70 (1993).

  129. M. V. Shamolin, “Existence and uniqueness of trajectories having infinitely distant points as limit sets for dynamical systems on a plane,” Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., No. 1, 68–71 (1993).

  130. M. V. Shamolin, “A new two-parameter family of phase portraits in problem of a body motion in a medium,” Dokl. Ross. Akad. Nauk, 337, No. 5, 611–614 (1994).

    Google Scholar 

  131. M. V. Shamolin, “Relative structural stability of dynamical systems for problem of body motion in a medium,” in: Analytical, Numerical, and Experimental Methods in Mechanics. A Collection of Scientific Works [in Russian], Izd. Mosk. Univ., Moscow (1995), pp. 14–19.

  132. M. V. Shamolin, “Definition of relative roughness and two-parameter family of phase portraits in rigid body dynamics,” Usp. Mat. Nauk, 51, No. 1, 175–176 (1996).

    Article  Google Scholar 

  133. M. V. Shamolin, “Periodic and Poisson stable trajectories in problem of body motion in a resisting medium,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 2, 55–63 (1996).

  134. M. V. Shamolin, “Variety of types of phase portraits in dynamics of a rigid body interacting with a resisting medium,” Dokl. Ross. Akad. Nauk, 349, No. 2, 193–197 (1996).

    Google Scholar 

  135. M. V. Shamolin, “Introduction to problem of body drag in a resisting medium and a new two-parameter family of phase portraits,” Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., No. 4, 57–69 (1996).

  136. M. V. Shamolin, “On an integrable case in spatial dynamics of a rigid body interacting with a medium,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 2, 65–68 (1997).

  137. M. V. Shamolin, “Spatial Poincaré topographical systems and comparison systems,” Usp. Mat. Nauk, 52, No. 3, 177–178 (1997).

    Article  MATH  Google Scholar 

  138. M. V. Shamolin, “On integrability in transcendental functions,” Usp. Mat. Nauk, 53, No. 3, 209–210 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  139. M. V. Shamolin, “Methods of nonlinear analysis in dynamics of a rigid body interacting with a medium,” in: CD Proc. of the Congress “Nonlinear Analysis and Its Applications,” Moscow, Russia, September 1–5, 1998, Moscow (1999), pp. 497–508.

  140. M. V. Shamolin, “Families of portraits with limit cycles in plane dynamics of a rigid body interacting with a medium,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 6, 29–37 (1998).

  141. M. V. Shamolin, “Certain classes of partial solutions in dynamics of a rigid body interacting with a medium,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 2, 178–189 (1999).

  142. M. V. Shamolin, “New Jacobi integrable cases in dynamics of a rigid body interacting with a medium,” Dokl. Ross. Akad. Nauk, 364, No. 5, 627–629 (1999).

    Google Scholar 

  143. M. V. Shamolin, “On roughness of dissipative systems and relative roughness and nonroughness of variable dissipation systems,” Usp. Mat. Nauk, 54, No. 5, 181–182 (1999).

    Article  Google Scholar 

  144. M. V. Shamolin, “A new family of phase portraits in spatial dynamics of a rigid body interacting with a medium,” Dokl. Ross. Akad. Nauk, 371, No. 4, 480–483 (2000).

    Google Scholar 

  145. M. V. Shamolin, “On limit sets of differential equations near singular points,” Usp. Mat. Nauk, 55, No. 3, 187–188 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  146. M. V. Shamolin, “Jacobi integrability in problem of four-dimensional rigid body motion in a resisting medium,” Dokl. Ross. Akad. Nauk, 375, No. 3, 343–346 (2000).

    Google Scholar 

  147. M. V. Shamolin, “On stability of motion of a body twisted around its longitudinal axis in a resisting medium,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 1, 189–193 (2001).

  148. M. V. Shamolin, “Integrability cases of equations for spatial dynamics of a rigid body,” Prikl. Mekh., 37, No. 6, 74–82 (2001).

    MathSciNet  MATH  Google Scholar 

  149. M. V. Shamolin, “Complete integrability of equations for motion of a spatial pendulum in a jet flow of medium,” Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., No. 5, 22–28 (2001).

  150. M. V. Shamolin, “On integrability of certain classes of nonconservative systems,” Usp. Mat. Nauk, 57, No. 1, 169–170 (2002).

    Article  Google Scholar 

  151. M. V. Shamolin, “Geometric representation of motion in a certain problem of body interaction with a medium,” Prikl. Mekh., 40, No. 4, 137–144 (2004).

    MathSciNet  MATH  Google Scholar 

  152. M. V. Shamolin, Methods for Analysis of Classes of Nonconservative Systems in Dynamics of a Rigid Body Interacting with a Medium [in Russian], Doctoral Dissertation, Moscow Univ., Moscow (2004).

  153. M. V. Shamolin, Some Problems of Differential and Topological Diagnosis [in Russian], Ekzamen, Moscow (2004).

  154. M. V. Shamolin, “A case of complete integrability in spatial dynamics of a rigid body interacting with a medium taking account of rotational derivatives of force moment in angular velocity,” Dokl. Ross. Akad. Nauk, 403, No. 4, 482–485 (2005).

    Google Scholar 

  155. M. V. Shamolin, “Comparison of Jacobi integrable cases of plane and spatial body motions in a medium under streamline flow-around,” Prikl. Mat. Mekh., 69, No. 6, 1003–1010 (2005).

    MathSciNet  MATH  Google Scholar 

  156. M. V. Shamolin, “On a certain integrable case of equations of dynamics in so(4) ×4,” Usp. Mat. Nauk, 60, No. 6, 233–234 (2005).

    Article  Google Scholar 

  157. M. V. Shamolin, “Model problem of body motion in a resisting medium taking account of dependence of resistance force on angular velocity,” in: Scientific Report of Institute of Mechanics, Moscow State Univ. [in Russian], No. 4818, Institute of Mechanics, Moscow State Univ., Moscow (2006).

  158. M. V. Shamolin, “Problem on rigid body spatial drag in a resisting medium,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, 3, 45–57 (2006).

    Google Scholar 

  159. M. V. Shamolin, “Complete integrability of equations of motion for a spatial pendulum in medium flow taking account of rotational derivatives of moments of its action force,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, 3, 187–192 (2007).

    Google Scholar 

  160. M. V. Shamolin, “A case of complete integrability in dynamics on a tangent bundle of two-dimensional sphere,” Usp. Mat. Nauk, 62, No. 5, 169–170 (2007).

    Article  MathSciNet  Google Scholar 

  161. M. V. Shamolin, Methods of Analysis of Variable Dissipation Dynamical Systems in Rigid Body Dynamics [in Russian], Ekzamen, Moscow (2007).

  162. M. V. Shamolin, Some Problems of Differential and Topological Diagnosis [in Russian], Ekzamen, Moscow (2007).

  163. M. V. Shamolin, “Three-parameter family of phase portraits in dynamics of a rigid body interacting with a medium,” Dokl. Ross. Akad. Nauk, 418, No. 1, 46–51 (2008).

    MathSciNet  Google Scholar 

  164. M. V. Shamolin, “Some model problems of dynamics for a rigid body interacting with a medium,” Prikl. Mekh., 43, No. 10, 49–67 (2007).

    MathSciNet  MATH  Google Scholar 

  165. M. V. Shamolin, “New integrable cases in dynamics of a medium-interacting body with allowance for dependence of resistance force moment on angular velocity,” Prikl. Mat. Mekh., 72, No. 2, 273–287 (2008).

    MathSciNet  MATH  Google Scholar 

  166. M. V. Shamolin, “Integrability of some classes of dynamic systems in terms of elementary functions,” Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 3, 43–49 (2008).

    MATH  Google Scholar 

  167. M. V. Shamolin, “On integrability in elementary functions of certain classes of nonconservative dynamical systems,” in: Sovr. Mat. Prilozh., 62, 131–171 (2009).

  168. M. V. Shamolin, “Dynamical systems with variable dissipation: Approaches, methods, and applications,” Fundam. Prikl. Mat., 14, No. 3, 3–237 (2008).

    MathSciNet  Google Scholar 

  169. M. V. Shamolin, “New cases of full integrability in dynamics of a dynamically symmetric four-dimensional solid in a nonconservative field,” Dokl. Ross. Akad. Nauk, 425, No. 3, 338–342 (2009).

    MATH  Google Scholar 

  170. M. V. Shamolin, “Generalized problem of differential diagnosis and its possible resolving,” Elektron. Model., 31, No. 1, 97–115 (2009).

    Google Scholar 

  171. M. V. Shamolin, “Resolving of diagnosis problem in case of precise trajectory measurements with error,” Elektron. Model., 31, No. 3, 73–90 (2009).

    Google Scholar 

  172. M. V. Shamolin, “Diagnosis of failures in certain non-direct control system,” Elektron. Model., 31, No. 4, 55–66 (2009).

    Google Scholar 

  173. M. V. Shamolin, “Classification of complete integrability cases in four-dimensional symmetric rigid-body dynamics in a nonconservative field,” Sovr. Mat. Prilozh., 65, 132–142 (2009).

    Google Scholar 

  174. M. V. Shamolin, “Stability of a rigid body translating in a resisting medium,” Prikl. Mekh., 45, No. 6, 125–140 (2009).

    MathSciNet  MATH  Google Scholar 

  175. M. V. Shamolin, “New cases of integrability in the spatial dynamics of a rigid body,” Dokl. Ross. Akad. Nauk, 431, No. 3, 339–343 (2010).

    MATH  Google Scholar 

  176. M. V. Shamolin, “A completely integrable case in the dynamics of a four-dimensional rigid body in a non-conservative field,” Usp. Mat. Nauk, 65, No. 1, 189–190 (2010).

    Article  Google Scholar 

  177. M. V. Shamolin, “Diagnosis of certain system of direct control of aircraft motion,” Elektron. Model., 32, No. 1, 45–52 (2010).

    Google Scholar 

  178. M. V. Shamolin, “On the problem of the motion of the body with plane front end in a resisting medium,” in: Scientific Report of Institute of Mechanics, Moscow State University [in Russian], No. 5052, Institute of Mechanics, Moscow State University, Moscow (2010).

  179. M. V. Shamolin, “Spatial motion of a rigid body in a resisting medium,” Prikl. Mekh., 46, No. 7, 120–133 (2010).

    MathSciNet  Google Scholar 

  180. M. V. Shamolin, “Motion diagnosis of aircraft in mode of planning lowering,” Elektron. Model., 32, No. 5, 31–44 (2010).

    MathSciNet  Google Scholar 

  181. M. V. Shamolin, “Comparison of complete integrability cases in dynamics of a two-, three-, and four-dimensional rigid body in a nonconservative field,” Sovr. Mat. Prilozh., 76, 84–99 (2012).

    MathSciNet  MATH  Google Scholar 

  182. M. V. Shamolin, “A new case of integrability in dynamics of a 4D-solid in a non-conservative field,” Dokl. Ross. Akad. Nauk, 437, No. 2, 190–193 (2011).

    Google Scholar 

  183. M. V. Shamolin, “Complete list of first integrals in the problem on the motion of a 4D solid in a resisting medium under assumption of linear damping,” Dokl. Ross. Akad. Nauk, 440, No. 2, 187–190 (2011).

    Google Scholar 

  184. M. V. Shamolin, “Diagnosis of hyro-stabilized platform included in control system of aircraft motion,” Elektron. Model., 33, No. 3, 121–126 (2011).

    Google Scholar 

  185. M. V. Shamolin, “Dynamical invariants of integrable variable dissipation dynamical systems,” Vestn. Nizhegorod. Univ., Part 2, No. 4, 356–357 (2011).

  186. M. V. Shamolin, “A multiparameter family of phase portraits in the dynamics of a rigid body interacting with a medium,” Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 3, 24–30 (2011).

    MathSciNet  MATH  Google Scholar 

  187. M. V. Shamolin, “Rigid body motion in a resisting medium,” Mat. Model., 23, No. 12, 79–104 (2011).

    MathSciNet  MATH  Google Scholar 

  188. M. V. Shamolin, “A new case of integrability in spatial dynamics of a rigid solid interacting with a medium under assumption of linear damping,” Dokl. Ross. Akad. Nauk, 442, No. 4, 479–481 (2012).

    Google Scholar 

  189. M. V. Shamolin, “New case of complete integrability of the dynamic equations on the tangent stratification of three-dimensional sphere,” Vestn. Sam. Univ. Estestv. Nauki, No. 5 (86), 187–189, (2011).

  190. M. V. Shamolin, “A new case of integrability in the dynamics of a 4D-rigid body in a nonconservative field under the assumption of linear damping,” Dokl. Ross. Akad. Nauk, 444, No. 5, 506–509 (2012).

    Google Scholar 

  191. M. V. Shamolin, “Some questions of qualitative theory in dynamics of systems with variable dissipation,” in: Sovr. Mat. Prilozh., 78, 138–147 (2012).

  192. M. V. Shamolin, “Complete list of first integrals of dynamic equations of spatial rigid body motion in a resisting medium under assumption of linear damping,” Vestn. Mosk. Univ. Ser. 1. Mat. Mekh., 4, 44–47 (2012).

    Google Scholar 

  193. M. V. Shamolin, “The problem of a rigid body motion in a resisting medium with the assumption of dependence of the force moment on the angular velocity,” Mat. Model., 24, No. 10, 109–132 (2012).

    MathSciNet  MATH  Google Scholar 

  194. M. V. Shamolin, “Complete list of first integrals of dynamic equations of motion of a 4D rigid body in a nonconservative field under the assumption of linear damping,” Dokl. Ross. Akad. Nauk, 449, No. 4, 416–419 (2013).

    Google Scholar 

  195. M. V. Shamolin, “A new case of integrability in transcendental functions in the dynamics of solid body interacting with the environment,” Avtomat. Telemekh., 8, 173–190 (2013).

    MathSciNet  MATH  Google Scholar 

  196. M. V. Shamolin, “New case of integrability in the dynamics of a multidimensional solid in a nonconservative field,” Dokl. Ross. Akad. Nauk, 453, No. 1, 46–49 (2013).

    Google Scholar 

  197. M. V. Shamolin, “New case of integrability of dynamic equations on the tangent bundle of a 3-sphere,” Usp. Mat. Nauk, 68, No. 5, 185–186 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  198. M. V. Shamolin, “On integrability in dynamic problems for a rigid body interacting with a medium,” Prikl. Mekh., 49, No. 6, 44–54 (2013).

    MathSciNet  MATH  Google Scholar 

  199. M. V. Shamolin, “Variety of integrable cases in dynamics of low- and multi-dimensional rigid bodies in nonconservative force fields,” in: Itogi Nauki i Tekh. Ser. Sovr. Mat. Prilozh. Temat. Obzory [in Russian], 125, All-Russian Institute for Scientific and Technical Information, Russian Academy of Sciences, Moscow (2013), pp. 5–254.

  200. M. V. Shamolin, “A new case of integrability in the dynamics of a multidimensional solid in a nonconservative field under the assumption of linear damping,” Dokl. Ross. Akad. Nauk, 457, No. 5, 542–545 (2014).

    Google Scholar 

  201. M. V. Shamolin, “Variety of integrable cases in spatial dynamics of a rigid body in a nonconservative force fields,” in: Tr. Sem. I. G. Petrovskogo, 30, Moscow State Univ., Moscow (2014), pp. 287–350.

  202. M. V. Shamolin, “A multidimensional pendulum in a nonconservative force field,” Dokl. Ross. Akad. Nauk, 460, No. 2, 165–169 (2015).

    MathSciNet  Google Scholar 

  203. M. V. Shamolin, “Rigid body motion in a resisting medium modelling and analogues with vortex streets,” Mat. Model., 27, No. 1, 33–53 (2015).

    MathSciNet  MATH  Google Scholar 

  204. M. V. Shamolin, “Integrable cases in the dynamics of a multi-dimensional rigid body in a nonconservative field in the presence of a tracking force,” Fundam. Prikl. Mat., 19, No. 3, 187–222 (2014).

    MathSciNet  Google Scholar 

  205. M. V. Shamolin, “Complete list of first integrals of dynamic equations for a multidimensional solid in a nonconservative field,” Dokl. Ross. Akad. Nauk, 461, No. 5, 533–536 (2015).

    MathSciNet  Google Scholar 

  206. M. V. Shamolin, “New case of complete integrability of dynamics equations on a tangent bundle to the three-dimensional sphere”, Vestn. Mosk. Univ. Ser. 1, Mat. Mekh., 3, 11–14 (2015).

    Google Scholar 

  207. M. V. Shamolin and S. V. Tsyptsyn, “Analytical and numerical study of trajectories of body motion in a resisting medium,” in: Scientific Report of Institute of Mechanics, Moscow State Univ. [in Russian], No. 4289, Institute of Mechanics, Moscow State Univ., Moscow (1993).

  208. M. V. Shamolin and D. V. Shebarshov, “Some problems of geometry in classical mechanics,” Preprint VINITI No. 1499–V99 (1999).

  209. M. V. Shamolin and D. V. Shebarshov, “Methods for solving main problem of differential diagnosis,” Preprint VINITI, No. 1500–V99 (1999).

  210. O. P. Shorygin and N. A. Shulman, “Entry of a disk into water at an attack angle,” Uch. Zap. TsAGI, 8, No. 1, 12–21 (1977).

    Google Scholar 

  211. D. Arrowsmith and C. Place, Ordinary Differential Equations. Qualitative Theory with Applications [Russian translation], Mir, Moscow (1986).

  212. C. Jacobi, Lectures on Dynamics [Russian translation], ONTI, Moscow (1936).

  213. R. R. Aidagulov and M. V. Shamolin, “Polynumbers, norms, metrics, and polyingles,” J. Math. Sci., 204, No. 6, 742–759 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  214. R. R. Aidagulov and M. V. Shamolin, “Finsler spaces, bingles, polyingles, and their symmetry groups,” J. Math. Sci., 204, No. 6, 732–741 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  215. R. R. Aidagulov and M. V. Shamolin, “Topology on polynumbers and fractals,” J. Math. Sci., 204, No. 6, 760–771 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  216. D. V. Georgievskii and M. V. Shamolin, “Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University ‘Urgent problems of geometry and mechanics’ named after V. V. Trofimov,” J. Math. Sci., 154, No. 4, 462–495 (2008).

    Article  MATH  Google Scholar 

  217. D. V. Georgievskii and M. V. Shamolin, “Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University ‘Urgent problems of geometry and mechanics’ named after V. V. Trofimov,” J. Math. Sci., 161, No. 5, 603–614 (2009).

    Article  MATH  Google Scholar 

  218. D. V. Georgievskii and M. V. Shamolin, “Sessions of the workshop of the Mathematics and Mechanics Department of Lomonosov Moscow State University ‘Urgent problems of geometry and mechanics’ named after V. V. Trofimov,” J. Math. Sci., 204, No. 6, 715–731 (2015).

    Article  MATH  Google Scholar 

  219. Yu. M. Okunev and M. V. Shamolin, “On the Construction of the General Solution of a Class of Complex Nonautonomous Equations,” J. Math. Sci., 204, No. 6, 787–799 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  220. M. V. Shamolin, “Three-dimensional structural optimization of controlled rigid motion in a resisting medium,” in: Proc. WCSMO-2, Zakopane, Poland, May 26–30, 1997, Zakopane, Poland (1997), pp. 387–392.

  221. M. V. Shamolin, “Some classical problems in three-dimensional dynamics of a rigid body interacting with a medium,” in: Proc. ICTACEM98, Kharagpur, India, December 1–5, 1998, Indian Inst. Technology, Kharagpur, India (1998), pp. 1–11.

  222. M. V. Shamolin, “Mathematical modelling of interaction of a rigid body with a medium and new cases of integrability,” in: CD Proc. ECCOMAS 2000, Barcelona, Spain, September 11–14, Barcelona (2000), pp. 1–11.

  223. M. V. Shamolin, “Some questions of the qualitative theory of ordinary differential equations and dynamics of a rigid body interacting with a medium,” J. Math. Sci., 110, No. 2, 2526–2555 (2002).

    Article  MathSciNet  Google Scholar 

  224. M. V. Shamolin, “New integrable cases and families of portraits in the plane and spatial dynamics of a rigid body interacting with a medium,” J. Math. Sci., 114, No. 1, 919–975 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  225. M. V. Shamolin, “Foundations of differential and topological diagnostics,” J. Math. Sci., 114, No. 1, 976–1024 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  226. M. V. Shamolin, “Classes of variable dissipation systems with nonzero mean in the dynamics of a rigid body,” J. Math. Sci., 122, No. 1, 2841–2915 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  227. M. V. Shamolin, “Structural stable vector fields in rigid body dynamics,” in: Proc. 8th Conf. Dynamical Systems: Theory and Applications (DSTA 2005), Lodz, Poland, December 12–15, 2005, 1, Technical Univ. Lodz (2005), pp. 429–436.

  228. M. V. Shamolin, “The cases of integrability in terms of transcendental functions in dynamics of a rigid body interacting with a medium,” in: Proc. 9th Conf. Dynamical Systems: Theory and Applications (DSTA 2007), Lodz, Poland, December 17–20, 2007, 1, Technical Univ. Lodz (2007), pp. 415–422.

  229. M. V. Shamolin, “Some methods of analysis of the dynamic systems with various dissipation in dynamics of a rigid body,” Proc. Appl. Math. Mech., 8, 10137–10138 (2008).

    Article  Google Scholar 

  230. M. V. Shamolin, “Dynamical systems with variable dissipation: Methods and applications,” in: Proc. 10th Conf. Dynamical Systems: Theory and Applications (DSTA 2009), Lodz, Poland, December 7–10, 2009, Technical Univ. Lodz (2009), pp. 91–104.

  231. M. V. Shamolin, “The various cases of complete integrability in dynamics of a rigid body interacting with a medium,” in: CD Proc. Conf. Multibody Dynamics, ECCOMAS Thematic Conf. Warsaw, Poland, June 29–July 2, 2009, Polish Acad. Sci., Warsaw (2009), pp. 1–20.

  232. M. V. Shamolin, “New cases of integrability in dynamics of a rigid body with the cone form of its shape interacting with a medium,” Proc. Appl. Math. Mech., 9, No. 1, 139–140 (2009).

    Article  Google Scholar 

  233. M. V. Shamolin, “Dynamical systems with various dissipation: Background, methods, applications,” in: CD Proc. XXXVIII Summer School-Conf. “Advanced Problems in Mechanics” (APM 2010), July 1–5, 2010, St. Petersburg (Repino), Russia [in Russian], St. Petersburg (2010), pp. 612–621.

  234. M. V. Shamolin, “Integrability and nonintegrability in terms of transcendental functions in dynamics of a rigid body,” Proc. Appl. Math. Mech., 10, No. 1, 63–64 (2010).

    Article  Google Scholar 

  235. M. V. Shamolin, “Cases of complete integrability in transcendental functions in dynamics and certain invariant indices,” in: CD Proc. 5th Int. Sci. Conf. Physics and Control PHYSCON 2011, Leon, Spain, September 5–8, 2011, Leon, Spain (2011) pp. 1–5.

  236. M. V. Shamolin, “Variety of the cases of integrability in dynamics of a 2D-, 3D-, and 4Drigid body interacting with a medium,” in: Proc. 11th Conf. Dynamical Systems: Theory and Applications (DSTA 2011), Lodz, Poland, December 5–8, 2011, Technical Univ. Lodz (2011), pp. 11–24.

  237. M. V. Shamolin, “Cases of Complete Integrability in Transcendental Functions in Dynamics and Certain Invariant Indices,” Proc. Appl. Math. Mech., 12, No. 1, 43–44 (2012).

    Article  Google Scholar 

  238. M. V. Shamolin, “Cases of integrability in transcendental functions in 3D Dynamics of a rigid body interacting with a medium,” in: Proc. ECCOMAS Multibody Dynamics 2013, Zagreb, Croatia, July 1–4, 2013, Zagreb, University of Zagreb (2013), pp. 903–912.

  239. M. V. Shamolin, “Variety of the cases of integrability in Dynamics of a symmetric 2D-, 3D- and 4D-rigid body in a nonconservative field,” Int. J. Struct. Stabil. Dynam., 13, No. 7, 1340011–1340024 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  240. M. V. Shamolin, “Review of cases of integrability in dynamics of lower- and multidimensional rigid body in a nonconservative field of forces,” in: Proc. 2014 Int. Conf. on Pure Mathematics and Applied Mathematics (PMAM’14), Venice, Italy, March 15–17, 2014, Venice (2014), pp. 86–102.

  241. M. V. Shamolin, “New cases of integrability in multidimensional dynamics in a nonconservative field,” in: CD Proc. XLII Summer School-Conf. “Advanced Problems in Mechanics” (APM 2014), June 30–July 5, 2014, St. Petersburg (Repino), Russia [in Russian], St. Petersburg (2014), pp. 435–446.

  242. M. V. Shamolin, “Dynamical pendulum-like nonconservative systems,” in: Applied Non-Linear Dynamical Systems, Springer Proc. Math. Stat., 93, 503–525 (2014).

  243. M. V. Shamolin, “On stability of certain key types of rigid body motion in a nonconservative field,” Proc. Appl. Math. Mech., 14, No. 1, 311–312 (2014).

    Article  Google Scholar 

  244. M. V. Shamolin, “Classification of integrable cases in the dynamics of a four-dimensional rigid body in a nonconservative field in the presence of a tracking force,” J. Math. Sci., 204, No. 6, 808–870 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  245. M. V. Shamolin, “Certain Integrable Cases in Dynamics of a Multi-Dimensional Rigid Body in a Nonconservative Field,” in: Proc. Int. Conf. on Pure and Appl. Math. (PMAM’15), Vienna, Austria, March 15–17, 2015, Vienna (2015), pp. 328–342.

  246. M. V. Shamolin, “Multidimensional pendulum in a nonconservative force field,” in: CD Proc. XLIII Summer School-Conf. “Advances Problems in Mechanics” (APM 2015), June 22–27, 2015, St. Petersburg, Russia [in Russian], St. Petersburg (2015), pp. 322–332.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Shamolin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamolin, M.V. Low-Dimensional and Multi-Dimensional Pendulums in Nonconservative Fields. Part 2. J Math Sci 233, 301–397 (2018). https://doi.org/10.1007/s10958-018-3934-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-018-3934-6

Keywords and phrases

AMS Subject Classification

Navigation