Skip to main content
Log in

Partial Orders Based on Inverses Along Elements

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The paper introduces and investigates partial orders that are finer than the minus partial order and are based on inverses along an element and other specific outer inverses. It turns out that in this way a number of classical partial orders can be equivalently defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. Baksalary, F. Pukelsheim, and G. P. H. Styan, “Some properties of matrix partial orderings,” Linear Algebra Appl., 119, 57–85 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Ben Israel and T. N. E. Greville, Generalized Inverses, Theory and Applications, 2nd ed., Springer, New York (2003).

  3. A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups. Vol. I., American Mathematical Society, Providence, Rhode Island (1961).

  4. R. E. Cline and R. E. Funderlic, “The rank of a difference of matrices and associated generalized inverses,” Linear Algebra Appl., 24, 185–215 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  5. M. P. Drazin, “Pseudo-inverse in associative rings and semigroups,” Amer. Math. Monthly, 65, 506–514 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  6. M. P. Drazin, “A class of outer generalized inverses,” Linear Algebra Appl., 436, No. 7, 1909–1923 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  7. M. P. Drazin, “A partial order in completely regular semigroups,” J. Algebra, 98, No. 2, 362–374 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. P. Drazin, “Natural structures on semigroups with involution,” Bull. Amer. Math. Soc., 84, No. 1, 139–141 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  9. J. A. Green, “On the structure of semigroups,” Ann. Math., 54, No. 1, 163–172 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  10. R. E. Hartwig, “How to partially order regular elements,” Math. Japon., 25, 1–13 (1980).

    MathSciNet  MATH  Google Scholar 

  11. R. E. Hartwig, “Block generalized inverses,” Arch. Rat. Mech. Anal., 61, No. 3, 197–251 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  12. R. E. Hartwig and R. Loewy, “Maximal elements under the three partial orders,” Linear Algebra Appl., 175, 39–61 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  13. R. E. Hartwig and G. P. H. Styan, “On some characterizations of the “star” partial ordering and rank-subtractivity,” Linear Algebra Appl., 82, 145–161 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Hernandez, M. Lattanzi, and N. Thome, “On a partial order defined by the weighted Moore–Penrose inverse,” Appl. Math. Comput., 219, No. 14, 7310–7318 (2013).

    MathSciNet  MATH  Google Scholar 

  15. J. M. Howie, Fundamentals of Semigroup Theory (London Math. Soc. Monographs. New Series, 12), Oxford Science Publications (1995).

  16. S. K. Mitra, P. Bhimasankaram, and S. B. Malik, Matrix Partial Orders, Shorted Operators and Applications, World Scientific Publishing Company (2010).

  17. X. Mary, “On generalized inverses and Green’s relations,” Linear Algebra Appl., 434, No. 8, 1836–1844 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  18. X. Mary and P. Patricio, “Generalized invertibility modulo H in semigroups and rings,” Linear Multilinear Algebra, 61, No. 8, 1130–1135 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Mitsch, “A natural partial order on semigroups,” Proc. Amer. Math. Soc., 97, No. 3, 384–388 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  20. S. K. Mitra, “On group inverses and the sharp order,” Linear Algebra Appl., 92, 17–37 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  21. S. K. Mitra and R. E. Hartwig, “Partial orders based on outer inverse,” Linear Algebra Appl., 176, 3–20 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  22. S. K. Jain, S. K. Mitra, and H. J. Werner, “Extensions of G-based matrix partial orders,” SIAM J. Matrix Anal. Appl., 17, No. 4, 834–850 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  23. S. K. Mitra, “Matrix partial order through generalized inverses: unified theory,” Linear Algebra Appl., 148, 237–263 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  24. W. D. Munn, “Pseudo-inverses in semigroups,” Math. Proc. Cambridge Phil. Soc., 57, No. 2, 247–250 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  25. K. Nambooripad, “The natural partial order on a regular semigroup,” Proc. Edinburgh Math. Soc., 23, 249–260 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Petrich, “Certain partial orders on semigroups,” Czechoslovak Math. J., 51, 415–432 (2001).

  27. D. S. Rakic and D. S. Djordjevic, “Partial orders in rings based on generalized inverses–unified theory,” Linear Algebra Appl., 471, 203–223 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  28. D. S. Rakic and D. S. Djordjevic, “Space pre-order and minus partial order for operators on Banach spaces,” Aeq. Math., 85, No. 3, 429–448 (2013).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Guterman.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 463, 2017, pp. 58–80.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guterman, A., Mary, X. & Shteyner, P. Partial Orders Based on Inverses Along Elements. J Math Sci 232, 783–796 (2018). https://doi.org/10.1007/s10958-018-3908-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-018-3908-8

Navigation