Advertisement

Formal Modules for Relative Formal Lubin–Tate Groups

Article

Relative formal Lubin–Tate groups are studied, namely, their structure, the ring of endomorphisms, and the group of points. The primary elements are considered, and an explicit formula for the generalized Hilbert symbol is derived.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Hazewinkel, Formal Groups and Applications, Acad. Press, New York (1978).Google Scholar
  2. 2.
    J. Lubin and J. Tate, “Formal complex multiplication in local fields,” Ann. Math. (2), 81, No. 2, 380–387 (1985).Google Scholar
  3. 3.
    E. de Shalite, “Relative Lubin–Tate groups,” Proc. Amer. Math. Soc., 95, No. 1, 1–4 (1985).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    S. V. Vostokov, “The norm pairing in formal modules,” Izv. AN SSSR, Ser. Mat., 45, No. 5, 985–1014 (1981).MATHGoogle Scholar
  5. 5.
    S. V. Vostokov, “The Hilbert symbol for formal Lubin–Tate groups. I,” Zap. Nauchn. Semin. LOMI, 114, 77–95 (1982).MATHGoogle Scholar
  6. 6.
    S. V. Vostokov and O. V. Demchenko, “An explicit form of the Hilbert pairing for relative formal Lubin–Tate groups,” Zap. Nauchn. Semin. POMI, 227, 41–44 (1995).MATHGoogle Scholar
  7. 7.
    S. V. Vostokov and I. B. Fesenko, “The Hilbert symbol for formal Lubin–Tate groups. II,” Zap. Nauchn. Semin. LOMI, 132, 85–96 (1983).MATHGoogle Scholar
  8. 8.
    S. V. Vostokov, “Symbols on formal groups,” Izv. AN SSSR, Ser. Mat., 45, No. 5, 9–23 (1981).MathSciNetMATHGoogle Scholar
  9. 9.
    S. V. Vostokov, “An explicit form of the reciprocity law,” Izv. AN SSSR, Ser. Mat., 42, No. 6, 1288–1321 (1978).MathSciNetMATHGoogle Scholar
  10. 10.
    K. Iwasawa, Local Class Field Theory [Russian translation], Mir, Moscow (1983).Google Scholar
  11. 11.
    A. I. Madunts, “On convergence of series over local fields,” Trudy SPb Mat. Obshch., 3, 283–320 (1994).MathSciNetGoogle Scholar
  12. 12.
    A. I. Madunts, “Convergence of sequences and series in multidimensional complete fields,” Author’s summary of the PhD Thesis, St. Petersburg (1995).Google Scholar
  13. 13.
    A. I. Madunts, “Formal Lubin–Tate groups over the ring of integers of a multidimensional local field,” Zap. Nauchn. Semin. POMI, 281, 221–226 (2001).MathSciNetMATHGoogle Scholar
  14. 14.
    A. I. Madunts and R. P. Vostokova, “Formal modules for generalized Lubin–Tate groups,” Zap. Nauchn. Semin. POMI, 435, 95–112 (2015).MATHGoogle Scholar
  15. 15.
    I. R. Shafarevich, “The general reciprocity law,” Mat. Sb., 26 (68), No. 1, 113–146 (1950).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.St.Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations