Advertisement

Journal of Mathematical Sciences

, Volume 232, Issue 5, pp 635–646 | Cite as

On Derived Equivalence of Algebras of Semidihedral Type with Two Simple Modules

  • A. I. Generalov
  • A. A. Zaikovskii
Article

The Hochschild cohomology groups of degrees not exceeding 3 are computed for algebras of semidihedral type that form the family SD(2B)1 (from the famous K. Erdmann’s classification). In the calculation, the beforehand construction of the initial part of the minimal projective bimodule resolution is used for algebras from the family under discussion. The obtained results imply that the algebras from the families SD(2B)1 and SD(2B)2 with the same parameters in defining relations are not derived equivalent.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Erdmann, “Blocks of tame representation type and related algebras,” Lecture Notes Math., 1428, Berlin; Heidelberg (1990).Google Scholar
  2. 2.
    Th. Holm, “Derived equivalence classification of algebras of dihedral, semidihedral, and quaternion type,” J. Algebra, 211, 159–205 (1999).Google Scholar
  3. 3.
    A. I. Generalov, “Hochschild cohomology of algebras of semidihedral type. III. The family SD(2B)2 in characteristic 2,” Zap. Nauchn. Semin. POMI, 400, 133–157 (2012).Google Scholar
  4. 4.
    A. I. Generalov, “Hochschild cohomology of algebras of semidihedral type. VI. The family SD(2B)2 in characteristic different from 2,” Zap. Nauchn. Semin. POMI, 443, 61–77 (2016).Google Scholar
  5. 5.
    A. I. Generalov, “Hochschild cohomology of algebras of semidihedral type. VII. Algebras with a small parameter,” Zap. Nauchn. Semin. POMI, this issue (2016).Google Scholar
  6. 6.
    Yu. V. Volkov, A. I. Generalov, and S. O. Ivanov, “On construction of bimodule resolutions with the help of Happel’s lemma,” Zap. Nauchn. Semin. POMI, 375, 61–70 (2010).zbMATHGoogle Scholar
  7. 7.
    M. A. Antipov and A. I. Generalov, “Cohomology of algebras of semidihedral type II,” Zap. Nauchn. Semin. POMI, 289, 9–36 (2002).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.St.Petersburg State UniversitySt.PetersburgRussia
  2. 2.St.Petersburg State UniversitySt.PetersburgRussia

Personalised recommendations