Journal of Mathematical Sciences

, Volume 231, Issue 5, pp 619–628 | Cite as

A Problem of Axisymmetric Torsion of a Multilayer Plate with Elastic Links between the Layers

  • N. M. Antonenko

By using the method of compliance functions and the Hankel transformation of the first order, we propose a procedure for the solution of the problem of torsion of a multilayer plate with elastic links between the layers. Two auxiliary functions connected with the transforms of stresses and displacements at the points of the top boundary of the layer are introduced for each layer. The recurrence relations for the auxiliary functions and the compliance functions of neighboring layers of the plate are constructed. For a two-layer plate, we analyze the influence of the coefficients of elastic links and the geometric and mechanical parameters of layers on the distribution of stresses at points of the common boundary of the layers.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. M. Antonenko, “Axisymmetric torsion of a two-layer plate with elastic links between the layers,” in: Reports of the Confer. of Young Scientists, “Pidstryhach Readings-2015,” May 26–28, 2015, Lviv (2015), available at:
  2. 2.
    N. N. Antonenko and I. G. Velichko, “A problem of torsion of a multilayer base with elastic links between the layers,” Novi Mat. Tekhnol. Metal. Mashyn., No. 1, 127–131 (2014).Google Scholar
  3. 3.
    A. S. Vasil’ev, M. E. Vasil’eva, and E. V. Sadyrin, “Torsion of an elastic half space with multilayer coating with periodic structure,” Vestn. Donsk. Gos. Tekh. Univ., Nos. 5/6 (74), 6–13 (2013).Google Scholar
  4. 4.
    A. S. Vasil’ev, E. V. Sadyrin, and I. A. Fedotov, “Contact problem of torsion of a transversely isotropic elastic half space with inhomogeneous transversely isotropic coating by a round die,” Vestn. Donsk. Gos. Tekh. Univ., Nos. 1-2 (70-71), 25–34 (2013).Google Scholar
  5. 5.
    I. G. Velychko and E. V. Stegantsev, “A problem of torsion of a half space with periodic structure,” Visn. Zaporiz. Derzh. Univ. Ser. Fiz.-Mat. Nauk. Biol. Nauk., No. 2, 32–37 (2000).Google Scholar
  6. 6.
    D. V. Hrylyts’kyi, “Torsion of a two-layer elastic medium,” Prykl. Mekh., 7, No. 1, 89–95 (1961).MathSciNetGoogle Scholar
  7. 7.
    A. F. Dashchenko and Yu. D. Kolybikhin, “Torsion of an orthotropic inhomogeneous layer by two punches,” Prikl. Mekh., 12, No. 3, 71–77 (1976); English translation: Soviet Appl. Mech., 12, No. 3, 269–274 (1976).Google Scholar
  8. 8.
    V. I. Petrishin, “Torsion of a multilayer base by an annular die,” in: Stability and Strength of Structural Elements [in Russian], Dnepropetrovsk Gos. Univ., Dnepropetrovsk (1988), pp. 96–99.Google Scholar
  9. 9.
    A. K. Privarnikov, Solution of the Boundary-Value Problems of the Theory of Elasticity for Multilayer Bases. Method. Development [in Russian], Dnepropetrovsk Gos. Univ., Dnepropetrovsk (1976).Google Scholar
  10. 10.
    A. É. Puro, “Solution of the axisymmetric problem of torsion of an inhomogeneous layer,” Prikl. Mekh., 18, No. 12, 31–35 (1982); English translation: Soviet Appl. Mech., 18, No. 12, 1071–1075 (1982).Google Scholar
  11. 11.
    A. R. Snitser, “The Reissner–Sagoci problem for a multilayer base with a cylindrical cavity,” Dinam. Sist., Issue13, 55–61 (1994); English translation: J. Math. Sci., 82, No. 3, 3439–3443 (1996).Google Scholar
  12. 12.
    H. T. Sulym, Foundations of the Mathematical Theory of Thermoelastic Equilibrium of Deformable Bodies with Thin Inclusions [in Ukrainian], NTSh Res.-Publ. Center, Lviv (2007).Google Scholar
  13. 13.
    A. M. Éishinskii, Torsion of Anisotropic and Inhomogeneous Bodies [in Russian], Poligrafist, Dnepropetrovsk (1999).Google Scholar
  14. 14.
    B. Abbès and Y. Q. Guo, “Analytic homogenization for torsion of orthotropic sandwich plates: Application to corrugated cardboard,” Compos. Struct., 92, No. 3, 699–706 (2010).CrossRefGoogle Scholar
  15. 15.
    A. Brzoza and V. Pauk, “Torsion of rough elastic half space by rigid punch,” Arch. Appl. Mech., 78, No. 7, 531–542 (2008).CrossRefzbMATHGoogle Scholar
  16. 16.
    G. K. Dhawan, “A mixed boundary-value problem of a transversely-isotropic half space under torsion by a flat annular rigid stamp,” Acta Mech., 41, Nos. 3-4, 289–297 (1981).Google Scholar
  17. 17.
    J. P. Jones and J. S. Whittier, “Waves at a flexibly bonded interface,” Trans. ASME. J. Appl. Mech., 34, No. 4, 905–909 (1967).CrossRefGoogle Scholar
  18. 18.
    X. Li, G. Li, C. H. Wang, and M. You, “Optimum design of composite sandwich structures subjected to combined torsion and bending loads,” Appl. Compos. Mater., 19, Nos. 3-4, 315–331 (2012).Google Scholar
  19. 19.
    L. M. Milne-Thomson, Antiplane Elastic Systems, Springer, Berlin (1962).CrossRefzbMATHGoogle Scholar
  20. 20.
    H. Nikopour and A. P. S. Selvadurai, “Torsion of a layered composite strip,” Compos. Struct., 95, 1–4 (2013).CrossRefGoogle Scholar
  21. 21.
    M. Rahimian, A. K. Ghorbani-Tanha, and M. Eskandari-Ghadi, “The Reissner–Sagoci problem for a transversely isotropic half space,” Int. J. Numer. Anal. Meth. Geomech., 30, No. 11, 1063–1074 (2006).CrossRefzbMATHGoogle Scholar
  22. 22.
    M. Rahman, “The Reissner–Sagoci problem for a half space under buried torsional forces,” Int. J. Solids Struct., 37, No. 8, 1119–1132 (2000).CrossRefzbMATHGoogle Scholar
  23. 23.
    E. Reissner and H. F. Sagoci, “Forced torsional oscillations of an elastic half space. I,” J. Appl. Phys., 15, No. 9, 652–654 (1944).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    A. P. S. Selvadurai, B. M. Singh, and J. Vrbik, “A Reissner–Sagoci problem for a non-homogeneous elastic solid,” J. Elasticity, 16, No. 4, 383–391 (1986).CrossRefzbMATHGoogle Scholar
  25. 25.
    T.-J. Liu and Y.-Sh. Wang, “Reissner–Sagoci problem for functionally graded materials with arbitrary spatial variation of material properties,” Mech. Res. Comm., 36, No. 3, 322–329 (2009).CrossRefzbMATHGoogle Scholar
  26. 26.
    A. Vasiliev, I. Sevostianov, S. Aizikovich, and Y.-R. Jeng, “Torsion of a punch attached to transversely isotropic half space with functionally graded coating,” Int. J. Eng. Sci., 61, 24–35 (2012).MathSciNetCrossRefGoogle Scholar
  27. 27.
    J. M. Whitney and R. D. Kurtz, “Analysis of orthotropic laminated plates subjected to torsional loading,” Compos. Eng., 3, No. 1, 83–97 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. M. Antonenko
    • 1
  1. 1.Zaporizhzhya National Technical UniversityZaporizhzhyaUkraine

Personalised recommendations