Journal of Mathematical Sciences

, Volume 230, Issue 6, pp 950–960 | Cite as

Finite-Difference Methods for Fractional Differential Equations of Order 1/2

  • M. Yu. Kokurin
  • S. I. Piskarev
  • M. Spreafico


In this work, we study approximations of solutions of fractional differential equations of order 1/2. We present a new method of approximation and obtain the order of convergence. The presentation is given within the abstract framework of a semidiscrete approximation scheme, which includes finite-element methods, finite-difference schemes, and projection methods.

Keywords and phrases

fractional Cauchy problem Banach space α-times resolution family discretization methods difference scheme error estimate 

AMS Subject Classification

45L05 65M12 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    A. A. Alikhanov, “A new difference scheme for the time fractional diffusion equation,” J. Comput. Phys., 280, 424–438 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    E. G. Bajlekova, Fractional evolution equations in Banach spaces, Ph.D. thesis, Eindhoven University of Technology (2001).Google Scholar
  3. 3.
    A. B. Bakushinsky and M. Yu. Kokurin, Iterative Methods for Approximate Solution of Inverse Problems, Springer-Verlag, Dordrecht (2004).zbMATHGoogle Scholar
  4. 4.
    P. Brenner and V. Thomee, “On rational approximations of semigroups,” SIAM J. Numer. Anal., 16, 683–694 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    C. Chen and M. Li, “On fractional resolvent operator functions,” Semigroup Forum, 80, 121–142 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    S. J. Farlow, Partial Differential Equations for Scientists and Engineers, Dover Publ., New York (1993).zbMATHGoogle Scholar
  7. 7.
    D. Guidetti, B. Karasozen, and S. Piskarev, “Approximation of abstract differential equations,” J. Math. Sci., 122, 3013–3054 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    V. Keyantuo and C. Lizama, “On a connection between powers of operators and fractional Cauchy problems,” J. Evol. Equ., 12, 245–265 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    M. M. Kokurin, “The uniqueness of a solution to the inverse Cauchy problem for a fractional differential equation in a Banach space,” Russ. Math., 57, No. 12, 16–30 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    M. Li, C. Chen, and F.-B. Li, “On the fractional powers of generators of fractional resolvent families,” J. Funct. Anal., 259, 2702–2726 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    M. Li, V. Morozov, and S. Piskarev, “On the approximations of derivatives of integrated semigroups, II,” J. Inverse Ill-Posed Probl., 19, 643–688 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Y. Lin and C. Xu, “Finite-difference spectral approximations for the time-fractional diffusion equation,” J. Comput. Phys., 225, 1533–1552 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    R. Liu, M. Li, J. Pastor, and S. Piskarev, “On the approximation of fractional resolution families,” Differ. Equ., 50, 927–937 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    R. Liu, M. Li, and S. Piskarev, “Stability of difference schemes for fractional equations,” Differ. Equ., 51, No. 7, 908–927 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    R. Liu, M. Li, and S. Piskarev, “Approximation of semilinear fractional Cauchy problem,” Comput. Meth. Appl. Math., 15, 203–212 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    M. M. Meerschaert and C. Tadjeran, “Finite difference approximations for fractional advectiondispersion flow equations,” J. Comput. Appl. Math., 172, 65–77 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    S. Piskarev, Differential Equations in Banach Spaces and Their Approximations [in Russian], Moscow (2005).Google Scholar
  18. 18.
    S. Piskarev, “Approximation of fractional equations in abstract spaces,” in: Proc. Int. Conf. “Differential Equations and Dynamical Systems,” July 8–12, Suzdal (2016), p. 273.Google Scholar
  19. 19.
    S. Piskarev, “Fractional equations and difference schemes,” in: Proc. Int. Conference “Computational Methods in Applied Mathematics,” July 31–August 6, 2016, Javaskyla, Finland (2016).Google Scholar
  20. 20.
    E. A. Polyanskii, The Method of Correction of Parabolic Equations in Nonhomogeneous Wave Guide [in Russian], Moscow, Nauka (1985).Google Scholar
  21. 21.
    V. Thomee and A. S. Vasudeva Murthy, “Approximate solution of u′ = −A 2 u using a relation between exp(−tA 2) and exp(itA),” Numer. Funct. Anal. Optim., 16, 1087–1096 (1995).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    G. Vainikko, “Approximative methods for nonlinear equations (two approaches to the convergence problem),” Nonlin. Anal., 2, 647–687 (1978).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    G. Vainikko and A. Pedas, ‘The properties of solutions of weakly singular integral equations,” J. Austral. Math. Soc., Ser. B, 22, 419–430 (1981).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. Yu. Kokurin
    • 1
  • S. I. Piskarev
    • 2
    • 3
  • M. Spreafico
    • 4
  1. 1.Department of Physics and MathematicsMari State UniversityYoshkar-OlaRussia
  2. 2.Scientific Research Computer CenterM. V. Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Russian Institute for Scientific and Technical InformationMoscowRussia
  4. 4.Department of Mathematics and PhysicsInstituto Nazionale di Fisica NucleareLecceItaly

Personalised recommendations