Journal of Mathematical Sciences

, Volume 230, Issue 6, pp 823–906 | Cite as

On Approximation of Coefficient Inverse Problems for Differential Equations in Functional Spaces

Article
  • 3 Downloads

Abstract

This paper is devoted to the theory of approximation of coefficient inverse problems for differential equations of parabolic, elliptic, and hyperbolic types in functional spaces. We present general statements of problems and their approximations and review results obtained earlier in the literature.

Keywords and phrases

abstract differential equation abstract hyperbolic problem abstract elliptic problem abstract parabolic problem C0-semigroup Banach space semidiscretization inverse overdetermined problem finite-difference scheme discrete semigroup 

AMS Subject Classification

35Nxx 65Jxx 65Nxx 35Jxx 47Dxx 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    K. R. Aida-zade and A. B. Rahimov, “An approach to numerical solution of some inverse problems for parabolic equations,” Inverse Probl. Sci. Eng., 22, No. 1, 96–111 (2014).MathSciNetMATHGoogle Scholar
  2. 2.
    K. R. Aida-zade and A. B. Ragimov, “On the solution of a coefficient inverse problem,” Sib. Zh. Ind. Mat., 16, No. 2, 3–13 (2013).MathSciNetGoogle Scholar
  3. 3.
    A. Ya. Akhundov and A. I. Gasanova, “On an inverse problem for a semilinear parabolic equation in the case of boundary value problem with nonlinear boundary condition,” Azerb. J. Math., 4, No. 2, 10–15 (2014).MathSciNetMATHGoogle Scholar
  4. 4.
    F. T. Akyildiz, Salih Tatar, and Suleyman Ulusoy, “Existence and uniqueness for a nonlinear inverse reaction-diffusion problem with a nonlinear source in higher dimensions,” Math. Methods Appl. Sci., 36, No. 17, 2397–2402 (2013).MathSciNetMATHGoogle Scholar
  5. 5.
    Yu. E. Anikonov and M. V. Neshchadim, “Analytical methods of the theory of inverse problems for parabolic equations,” J. Math. Sci., 195, No. 6, 754–770 (2013).MathSciNetGoogle Scholar
  6. 6.
    Yu. E. Anikonov, J. Cheng, and M. Yamamoto, “A uniqueness result in an inverse hyperbolic problem with analyticity,” Eur. J. Appl. Math., 15, No. 5, 533–543 (2004).MathSciNetMATHGoogle Scholar
  7. 7.
    Yu. E. Anikonov and M. Yamamoto, “Analytic representations of solutions to inverse problems for nonlinear equations,” J. Inverse Ill-Posed Probl., 17, No. 7, 695–701 (2009).MathSciNetMATHGoogle Scholar
  8. 8.
    A. Ashyralyev and F. Ozesenli Tetikoglu, “A note on Bitsadze–Samarskii type nonlocal boundary value problems: Well-posedness,” Numer. Funct. Anal. Optim., 34, No. 9, 939–975 (2013).MathSciNetMATHGoogle Scholar
  9. 9.
    A. Ashyralyev and E. Ozturk, “On Bitsadze–Samarskii type nonlocal boundary value problems for elliptic differential and difference equations: Well-posedness,” Appl. Math. Comput, 219, No. 3. 1093–1107 (2013).MathSciNetMATHGoogle Scholar
  10. 10.
    A. Ashyralyev and P. E. Sobolevskii, New Difference Schemes for Partial Differential Equations, Operator Theory Advances and Applications, Birkhäuser Verlag, Basel, Boston, Berlin (2004).MATHGoogle Scholar
  11. 11.
    A. Ashyralyev and P. E. Sobolevskii, “A note on the difference schemes for hyperbolic equations,” Abstr. Appl. Anal., 6, No. 2, 63–70 (2001).MathSciNetMATHGoogle Scholar
  12. 12.
    A. Ashyralyev, C. Cuevas, and S. Piskarev, “On well-posedness of difference schemes for abstract elliptic equations in L p([0, T];E) spaces,” Numer. Funct. Anal. Optim., Vol. 29, Issue 1&2, 43–65 (2008).MathSciNetMATHGoogle Scholar
  13. 13.
    C. Ashyralyyev and M. Dedeturk, “Approximation of the inverse elliptic problem with mixed boundary value conditions and overdetermination,” Preprint (2014).Google Scholar
  14. 14.
    C. Ashyralyyev and M. Dedeturk, “Approximate solution of inverse problem for elliptic equation with overdetermination,” Abstr. Appl. Anal., Art. ID 548017 (2013), 11 pp.Google Scholar
  15. 15.
    F. Awawdeh, “Perturbation method for abstract second-order inverse problems,” Nonlinear Anal., 72, No. 3-4, 1379–1386 (2010).MathSciNetMATHGoogle Scholar
  16. 16.
    N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods [in Russian], Nauka, Moscow (1987).MATHGoogle Scholar
  17. 17.
    G. Bal and G. Uhlmann, “Reconstruction of coefficients in scalar second-order elliptic equations from knowledge of their solutions,” Commun. Pure Appl. Math., 66, No. 10, 1629–1652 (2013).MathSciNetMATHGoogle Scholar
  18. 18.
    G. Bal, E. Bonnetier, F. Monard, and F. Triki, “Inverse diffusion from knowledge of power densities,” Inverse Probl. Imag., 7, No. 2, 353–375 (2013).MathSciNetMATHGoogle Scholar
  19. 19.
    V. Barbu and N. H. Pavel, “On the invertibility of I ± exp(−tA), t > 0, with A maximal monotone,” In: World Congress of Nonlinear Analysts ’92, Vols. I–IV, de Gruyter, Berlin (1996), pp. 2231–2237.Google Scholar
  20. 20.
    L. Beilina, Nguyen Trung Thanh, M. V. Klibanov, and M. A. Fiddy, “Reconstruction from blind experimental data for an inverse problem for a hyperbolic equation,” Inverse Probl., 30, No. 2, 025002, (2014) 24 pp.MathSciNetMATHGoogle Scholar
  21. 21.
    M. Bellassoued and M. Yamamoto, “Inverse source problem for a transmission problem for a parabolic equation,” J. Inverse Ill-Posed Probl., 14, No. 1, 47–56 (2006).MathSciNetMATHGoogle Scholar
  22. 22.
    M. Bellassoued and M. Yamamoto, “Determination of a coefficient in the wave equation with a single measurement,” Appl. Anal., 87, No. 8, 901–920 (2008).MathSciNetMATHGoogle Scholar
  23. 23.
    M. Bellassoued, D. Jellali, and M. Yamamoto, “Lipschitz stability for a hyperbolic inverse problem by finite local boundary data,” Appl. Anal., 85, No. 10, 1219–1243 (2006).MathSciNetMATHGoogle Scholar
  24. 24.
    M. Bellassoued, D. Jellali, and M. Yamamoto, “Stability estimate for the hyperbolic inverse boundary value problem by local Dirichlet-to-Neumann map,” J. Math. Anal. Appl., 343, No. 2, 1036–1046 (2008).MathSciNetMATHGoogle Scholar
  25. 25.
    Yu. Ya. Belov, “Inverse problems for parabolic equations,” J. Inverse Ill-Posed Probl., 1, No. 4, 283–305 (1993).MathSciNetMATHGoogle Scholar
  26. 26.
    A. Benabdallah, M. Cristofol, P. Gaitan, and M. Yamamoto, “Inverse problem for a parabolic system with two components by measurements of one component,” Appl. Anal., 88, No. 5, 683–709 (2009).MathSciNetMATHGoogle Scholar
  27. 27.
    I. B. Bereznyts’ka, “Inverse problem of determination of the source in a general parabolic equation,” Mat. Stud., 18, No. 2, 169–176 (2002).MathSciNetMATHGoogle Scholar
  28. 28.
    W.-J. Beyn and S. Piskarev, “Shadowing for discrete approximations of abstract parabolic equations,” Discrete Contin. Dynam. Syst. Ser. B, Vol. 10, No. 1, 19–42 (2008).MathSciNetMATHGoogle Scholar
  29. 29.
    L. F. Borisova, “Inverse problem for parabolic high-order equations,” J. Inverse Ill-Posed Probl., 16, No. 3, 209–220 (2008).MathSciNetMATHGoogle Scholar
  30. 30.
    G. Bruckner and M. Yamamoto, “Determination of point wave sources by pointwise observations: Stability and reconstruction,” Inverse Probl., 16, No. 3, 723–748 (2000).MathSciNetMATHGoogle Scholar
  31. 31.
    A. L. Bukhgeim, J. Cheng, and M. Yamamoto, “Conditional stability in an inverse problem of determining a non-smooth boundary,” J. Math. Anal. Appl., 242, No. 1, 57–74 (2000).MathSciNetMATHGoogle Scholar
  32. 32.
    J. Cheng and M. Yamamoto, “The global uniqueness for determining two convection coefficients from Dirichlet to Neumann map in two dimensions,” Inverse Probl., 16, No. 3, L25–L30 (2000).MathSciNetMATHGoogle Scholar
  33. 33.
    J. Cheng and M. Yamamoto, “Determination of two convection coefficients from Dirichlet to Neumann map in the two-dimensional case,” SIAM J. Math. Anal., 35, No. 6, 1371–1393 (2004).MathSciNetMATHGoogle Scholar
  34. 34.
    J. Cheng and M. Yamamoto, “Identification of convection term in a parabolic equation with a single measurement,” Nonlinear Anal., Ser. A., 50, No. 2, 163–171 (2002).MathSciNetMATHGoogle Scholar
  35. 35.
    J. Cheng, Li Peng, and M. Yamamoto, “The conditional stability in line unique continuation for a wave equation and an inverse wave source problem,” Inverse Probl., 21, No. 6, 1993–2007 (2005).MathSciNetMATHGoogle Scholar
  36. 36.
    J. Cheng, Y. C. Hon, and M. Yamamoto, “Conditional stability for an inverse Neumann boundary problem,” Appl. Anal., 83, No. 1, 49–62 (2004).MathSciNetMATHGoogle Scholar
  37. 37.
    J. Cheng, G. Ding, and M. Yamamoto, “Uniqueness along a line for an inverse wave source problem,” Commun. Partial Differ. Equ., 27, No. 9-10, 2055–2069 (2002).MathSciNetMATHGoogle Scholar
  38. 38.
    W. Chojnacki, “Group representations of bounded cosine functions,” J. Rein. Angew. Math., 478, 61–84 (1996).MathSciNetMATHGoogle Scholar
  39. 39.
    W. Chojnacki, “On group decompositions of bounded cosine sequences,” Stud. Math., 181, No. 1, 61–85 (2007).MathSciNetMATHGoogle Scholar
  40. 40.
    M. Choulli and M. Yamamoto, “Uniqueness and stability in determining the heat radiative coefficient, the initial temperature and a boundary coefficient in a parabolic equation,” Nonlinear Anal., 69, No. 11, 3983–3998 (2008).MathSciNetMATHGoogle Scholar
  41. 41.
    M. Choulli and M. Yamamoto, “Some stability estimates in determining sources and coefficients,” J. Inverse Ill-Posed Probl., 14, No. 4, 355–373 (2006).MathSciNetMATHGoogle Scholar
  42. 42.
    M. Choulli and M. Yamamoto, “Generic well-posedness of a linear inverse parabolic problem with diffusion parameters,” J. Inverse Ill-Posed Probl., 7, No. 3, 241–254 (1999).MathSciNetMATHGoogle Scholar
  43. 43.
    D.-K. Chyan, S.-Y. Shaw, and S. Piskarev, “On maximal regularity and semivariation of cosine operator functions,” J. London Math. Soc. (2), 59, No. 3, 1023–1032 (1999).MathSciNetMATHGoogle Scholar
  44. 44.
    R. Cipolatti and M. Yamamoto, “An inverse problem for a wave equation with arbitrary initial values and a finite time of observations,” Inverse Probl., 27, No. 9, 095006 (2011), 15 pp.MathSciNetMATHGoogle Scholar
  45. 45.
    P. Clement, H. J. A. M. Heijmans, S. Angenent, et al., One-Parameter Semigroups, CWIMonographs, 5. North-Holland Publishing Co., Amsterdam (1987).MATHGoogle Scholar
  46. 46.
    A. M. Denisov, “The inverse problem for the diffusion equation with overdetermination in the form of external volume potential,” Zh. Vychisl. Mat. Mat. Fiz., 51, No. 9, 1695–1702 (2011); translation in Comput. Math. Math. Phys., 51, No. 9, 1588–1595 (2011).Google Scholar
  47. 47.
    A. M. Denisov, “Inverse problems for a quasilinear hyperbolic equation in the case of a moving observation point,” Differ. Uravn., 45, No. 11, 1543–1553 (2009); translation in Differ. Equ., 45, No. 11, 1577–1587 (2009).Google Scholar
  48. 48.
    A. M. Denisov and S. I. Solov’eva, “Inverse problem for the diffusion equation in the case of spherical symmetry,” Comput. Math. Math. Phys., 53, No. 11, 1607–1613 (2013).MathSciNetMATHGoogle Scholar
  49. 49.
    S. D’haeyer, B. T. Johansson, and M. Slodichka, “Reconstruction of a spacewise-dependent heat source in a time-dependent heat diffusion process,” IMA J. Appl. Math., 79, No. 1, 33–53 (2014).MathSciNetMATHGoogle Scholar
  50. 50.
    P. DuChateau, “An adjoint method for proving identifiability of coefficients in parabolic equations,” J. Inverse Ill-Posed Probl., 21, No. 5, 639–663 (2013).MathSciNetMATHGoogle Scholar
  51. 51.
    B. Eberhardt and G. Greiner, “Baillon’s theorem on maximal regularity,” Acta Appl. Math., 27, 47–54 (1992).MathSciNetMATHGoogle Scholar
  52. 52.
    H. Egger, J.-F. Pietschmann, and M. Schlottbom, “Simultaneous identification of diffusion and absorption coefficients in a quasilinear elliptic problem,” Inverse Probl., 30, No. 3, 035009 (2014), 8 pp.MathSciNetMATHGoogle Scholar
  53. 53.
    H. O. Fattorini, Second-Order Linear Differential Equations in Banach Spaces, North-Holland, Amsterdam (1985).MATHGoogle Scholar
  54. 54.
    U. M. Fedus, “An inverse problem for determining the heat capacity coefficient,” Mat. Stud., 25, No. 2, 126–140 (2006).MathSciNetMATHGoogle Scholar
  55. 55.
    A. Fraguela, J. A. Infante, A. M. Ramos, and J. M. Rey, “A uniqueness result for the identification of a time-dependent diffusion coefficient,” Inverse Probl., 29, No. 12, 125009 (2013), 17 pp.MathSciNetMATHGoogle Scholar
  56. 56.
    H. Fujita and A. Mizutani, “On the finite element method for parabolic equations. I. Approximation of holomorphic semi-groups,” J. Math. Soc. Jpn., 28, No. 4, 749–771 (1976).MathSciNetMATHGoogle Scholar
  57. 57.
    P. Gaitan, H. Isozaki, O. Poisson, S. Siltanen, and J. P. Tamminen, “Inverse problems for timedependent singular heat conductivities-one-dimensional case,” SIAM J. Math. Anal., 45, No. 3, 1675–1690 (2013).MathSciNetMATHGoogle Scholar
  58. 58.
    G. C. Garcia, A. Osses, and M. Tapia, “A heat source reconstruction formula from single internal measurements using a family of null controls,” J. Inverse Ill-Posed Probl., 21, No. 6, 755–779 (2013).MathSciNetMATHGoogle Scholar
  59. 59.
    N. L. Gol’dman, “On a counterexample of inverse parabolic problems with final overdetermination,” Dokl. Math. 88, No. 3, 714–716 (2013); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk, 453, No. 5, 479–481 (2013).Google Scholar
  60. 60.
    N. L. Gol’dman, “Finding the coefficient multiplying the time derivative in quasilinear parabolic equations in H¨older spaces,” Differ. Equ., 48, No. 12, 1563–1571 (2012); translation from Differ. Uravn., 48, No. 12, 1597–1606 (2012).Google Scholar
  61. 61.
    N. L. Gol’dman, “On the properties of solutions of parabolic equations with unknown coefficients,” Differ. Uravn., 47, No. 1, 60–69 (2011); translation in Differ. Equ., 47, No. 1, 60–68 (2011).Google Scholar
  62. 62.
    N. L. Gol’dman, “Determination of the right-hand side in a quasilinear parabolic equation with final observation,” Differ. Uravn., 41, No. 3, 366–374, 430 (2005); translation in Differ. Equ., 41, No. 3, 384–392 (2005).Google Scholar
  63. 63.
    O. F. Gozukizil and M. Yaman, “A note on the unique solvability of an inverse problem with integral overdetermination,” Appl. Math. E-Notes, 8, 223–230 (2008).MathSciNetMATHGoogle Scholar
  64. 64.
    R. D. Grigorieff, “Diskrete Approximation von Eigenwertproblemen. II. Konvergenzordnung,” Numer. Math., 24, No. 5, 415–433 (1975).MathSciNetMATHGoogle Scholar
  65. 65.
    D. Guidetti, “Determining the source term in an abstract parabolic problem from a time integral of the solution,” In: Bruno Pini Mathematical Analysis Seminar 2011, 20 pp., Univ. Bologna, Alma Mater Stud., Bologna (2011).Google Scholar
  66. 66.
    D. Guidetti, “Determining the source term in an abstract parabolic problem from a time integral of the solution,” Mediterr. J. Math., 9, No. 4, 611–633 (2012).MathSciNetMATHGoogle Scholar
  67. 67.
    D. Guidetti, “Partial reconstruction of the source term in a linear parabolic initial problem with Dirichlet boundary conditions,” Discrete Contin. Dyn. Syst., 33, No. 11-12, 5107–5141 (2013).MathSciNetMATHGoogle Scholar
  68. 68.
    D. Guidetti, “Partial reconstruction of the source term in a linear parabolic initial problem with first order boundary conditions,” Appl. Anal., 93, No. 3, 511–538 (2014).MathSciNetMATHGoogle Scholar
  69. 69.
    D. Guidetti, “Partial reconstruction of the source term in a linear parabolic initial value problem,” J. Math. Anal. Appl., 355, No. 2, 796–810 (2009).MathSciNetMATHGoogle Scholar
  70. 70.
    D. Guidetti, “Convergence to a stationary state of solutions to inverse problems of parabolic type,” Discrete Contin. Dynam. Syst. Ser. S, 6, No. 3, 711–722 (2013).MathSciNetMATHGoogle Scholar
  71. 71.
    D. Guidetti, B. Karasozen, and S. Piskarev, “Approximation of abstract differential equations,” J. Math. Sci., 122, No. 2, 3013–3054 (2004).MathSciNetMATHGoogle Scholar
  72. 72.
    A. Hasanov and B. Pektas, “Identification of an unknown time-dependent heat source term from overspecified Dirichlet boundary data by conjugate gradient method,” Comput. Math. Appl., 65, No. 1, 42–57 (2013).MathSciNetMATHGoogle Scholar
  73. 73.
    A. Hasanov, M. Otelbaev, and B. Akpayev, “Inverse heat conduction problems with boundary and final time measured output data,” Inverse Probl. Sci. Eng., 19, No. 7, 985–1006 (2011).MathSciNetMATHGoogle Scholar
  74. 74.
    A. Hasanov and M. Slodicka, “An analysis of inverse source problems with final time measured output data for the heat conduction equation: a semigroup approach,” Appl. Math. Lett., 26, No. 2, 207–214 (2013).MathSciNetMATHGoogle Scholar
  75. 75.
    Dinh Nho Hao, Phan Xuan Thanh, D. Lesnic, and M. Ivanchov, “Determination of a source in the heat equation from integral observations,” J. Comput. Appl. Math., 264, 82–98 (2014).MathSciNetMATHGoogle Scholar
  76. 76.
    A. Hazanee, M. I. Ismailov, D. Lesnic, and N. B. Kerimov, “An inverse time-dependent source problem for the heat equation,” Appl. Numer. Math., 69, 13–33 (2013).MathSciNetMATHGoogle Scholar
  77. 77.
    R. H. W. Hoppe, “A constructive approach to the Bellman semigroup,” Nonlinear Anal., 9, No. 11, 1165–1181 (1985).MathSciNetMATHGoogle Scholar
  78. 78.
    M. S. Hussein, D. Lesnic, and M. I. Ivanchov, “Simultaneous determination of time-dependent coefficients in the heat equation,” Comput. Math. Appl., 67, No. 5, 1065–1091 (2014).MathSciNetMATHGoogle Scholar
  79. 79.
    O. Yu. Imanuvilov and M. Yamamoto, “Uniqueness for inverse boundary value problems by Dirichlet-to-Neumann map on subboundaries,” Milan J. Math., 81, No. 2, 187–258 (2013).MathSciNetMATHGoogle Scholar
  80. 80.
    O. Yu. Imanuvilov and M. Yamamoto, “Inverse problem by Cauchy data on an arbitrary subboundary for systems of elliptic equations,” Inverse Probl., 28, No. 9, 095015, (2012), 30 pp.MATHGoogle Scholar
  81. 81.
    O. Yu. Imanuvilov, V. Isakov, and M. Yamamoto, “New realization of the pseudoconvexity and its application to an inverse problem,” Appl. Anal., 88, No. 5, 637–652 (2009).MathSciNetMATHGoogle Scholar
  82. 82.
    O. Yu. Imanuvilov, G. Uhlmann, and M. Yamamoto, “Determination of second-order elliptic operators in two dimensions from partial Cauchy data,” Proc. Natl. Acad. Sci. USA, 108, No. 2, 467–472 (2011).MathSciNetMATHGoogle Scholar
  83. 83.
    O. Yu. Imanuvilov, G. Uhlmann, and M. Yamamoto, “Inverse boundary value problem by measuring Dirichlet data and Neumann data on disjoint sets,” Inverse Probl., 27, No. 8, 085007 (2011), 26 pp.MathSciNetMATHGoogle Scholar
  84. 84.
    O. Yu. Imanuvilov, G. Uhlmann, and M. Yamamoto, “Partial Cauchy data for general second order elliptic operators in two dimensions,” Publ. Res. Inst. Math. Sci., 48, No. 4, 971–1055 (2012).MathSciNetMATHGoogle Scholar
  85. 85.
    O. Yu. Imanuvilov and M. Yamamoto, “Stability estimate in a Cauchy problem for a hyperbolic equation with variable coefficients. Inverse problems: modeling and simulation,” J. Inverse Ill-Posed Probl., 13, No. 6, 583–594 (2005).MathSciNetMATHGoogle Scholar
  86. 86.
    O. Yu. Imanuvilov and M. Yamamoto, “Global Lipschitz stability in an inverse hyperbolic problem by interior observations,” In: Special issue to celebrate Pierre Sabatier’s 65th birthday (Montpellier, 2000), Inverse Probl., 17, No. 4, 717–728 (2001).Google Scholar
  87. 87.
    O. Yu. Imanuvilov and M. Yamamoto, “Global uniqueness and stability in determining coefficients of wave equations,” Commun. Partial Differ. Equ., 26, No. 7-8, 1409–1425 (2001).MathSciNetMATHGoogle Scholar
  88. 88.
    V. Isakov, “Uniqueness for inverse parabolic problems with a lateral overdetermination,” Commun. Partial Differ. Equ., 14, No. 6, 681–689 (1989).MathSciNetMATHGoogle Scholar
  89. 89.
    V. Isakov, “Inverse parabolic problems with the final overdetermination,” Commun. Pure Appl. Math., 44, No. 2, 185–209 (1991).MathSciNetMATHGoogle Scholar
  90. 90.
    M. I. Ismailov and F. Kanca, “An inverse coefficient problem for a parabolic equation in the case of nonlocal boundary and overdetermination conditions,” Math. Methods Appl. Sci., 34, No. 6, 692–702 (2011).MathSciNetMATHGoogle Scholar
  91. 91.
    V. K. Ivanov, V. V. Vasin, and V. P. Tanana, Theory of Linear Ill-Posed Problems and Its Applications, VSP, Utrecht (2002).MATHGoogle Scholar
  92. 92.
    V. K. Ivanov, I. V. Mel’nikova, and A. I. Filinkov, Operator-Differential Equations and Ill-Posed Problems [in Russian], Nauka, Moscow (1995).MATHGoogle Scholar
  93. 93.
    M. I. Ivanchov, “Inverse problem for a multidimensional heat equation with an unknown source function,” Mat. Stud., 16, No. 1, 93–98 (2001).MathSciNetMATHGoogle Scholar
  94. 94.
    M. I. Ivanchov, “Inverse problem for semilinear parabolic equation,” Mat. Stud., 29, No. 2, 181–191 (2008).MathSciNetMATHGoogle Scholar
  95. 95.
    S. I. Kabanikhin, Projection-Difference Methods for Calculation of Coefficients of Hyperbolic Equations [in Russian], Nauka, Novosibirsk (1988).MATHGoogle Scholar
  96. 96.
    V. L. Kamynin, “On the inverse problem of determining the leading coefficient in a parabolic equation,” Mat. Zametki, 84, No. 1, 48–58 (2008); translation in Math. Notes, 84, No. 1-2, 45–54 (2008).Google Scholar
  97. 97.
    V. L. Kamynin, “On the unique solvability of an inverse problem for parabolic equations with a final overdetermination condition,” Mat. Zametki, 73, No. 2, 217–227 (2003); translation in Math. Notes, 73, No. 1-2, 202–211 (2003).Google Scholar
  98. 98.
    V. L. Kamynin, “On an inverse problem of determining the right-hand side of a parabolic equation with the integral overdetermination condition,” Mat. Zametki, 77, No. 4, 522–534 (2005); translation in Math. Notes, 77, No. 3-4, 482–493 (2005).Google Scholar
  99. 99.
    V. L. Kamynin, “The inverse problem of determining the lower-order coefficient in parabolic equations with integral observation,” Mat. Zametki, 94, No. 2, 207–217 (2013); translation in Math. Notes, 94, No. 1-2, 205–213 (2013).Google Scholar
  100. 100.
    V. L. Kamynin and E. Franchini, “An inverse problem for a higher-order parabolic equation, Mat. Zametki, 64, No. 5, 680–691 (1998); translation in Math. Notes, 64, No. 5-6, 590–599 (1998).Google Scholar
  101. 101.
    F. Kanca, “The inverse problem of the heat equation with periodic boundary and integral overdetermination conditions,” J. Inequal. Appl., 2013, No. 108 (2013), 9 pp.Google Scholar
  102. 102.
    F. Kanca, “Inverse coefficient problem of the parabolic equation with periodic boundary and integral overdetermination conditions,” Abstr. Appl. Anal., Art. ID 659804 (2013), 7 pp.Google Scholar
  103. 103.
    F. Kanca and M. I. Ismailov, “The inverse problem of finding the time-dependent diffusion coefficient of the heat equation from integral overdetermination data,” Inverse Probl. Sci. Eng., 20, No. 4, 463–476 (2012).MathSciNetMATHGoogle Scholar
  104. 104.
    T. Kato, Perturbation Theory for Linear Operators. Springer-Verlag, Berlin (1995).MATHGoogle Scholar
  105. 105.
    N. B. Kerimov and M. I. Ismailov, “An inverse coefficient problem for the heat equation in the case of nonlocal boundary conditions,” J. Math. Anal. Appl., 396, No. 2, 546–554 (2012).MathSciNetMATHGoogle Scholar
  106. 106.
    S. Kim and M. Yamamoto, “Uniqueness in identification of the support of a source term in an elliptic equation,” SIAM J. Math. Anal., 35, No. 1, 148–159 (2003).MathSciNetMATHGoogle Scholar
  107. 107.
    J. Kisynski, “On cosine operator functions and one parameter groups of operators,” Stud. Match., 44, 93–105 (1972).MathSciNetMATHGoogle Scholar
  108. 108.
    V. Komornik and M. Yamamoto, “Upper and lower estimates in determining point sources in a wave equation,” Inverse Probl., 18, No. 2, 319–329 (2002).MathSciNetMATHGoogle Scholar
  109. 109.
    A. B. Kostin, “The inverse problem of reconstructing a source in a parabolic equation from the nonlocal observation condition,” Mat. Sb., 204, No. 10, 3–46 (2013); translation in Sb. Math., 204, No. 9-10, 1391–1434 (2013).Google Scholar
  110. 110.
    A. B. Kostin, “Counterexamples in inverse problems for parabolic, elliptic, and hyperbolic equations,” Comput. Math. Math. Phys., 54, No. 5, 797–810 (2014).MathSciNetMATHGoogle Scholar
  111. 111.
    A. I. Kozhanov and R. R. Safiullova, “Linear inverse problems for parabolic and hyperbolic equations,” J. Inverse Ill-Posed Probl., 18, No. 1, 1–24 (2010).MathSciNetMATHGoogle Scholar
  112. 112.
    M. A. Krasnosel’skii, E. A. Lifshits, and A. V. Sobolev, Positive Linear Systems. The Method of Positive Operators, Heldermann Verlag, Berlin (1989).MATHGoogle Scholar
  113. 113.
    S. G. Krein, Linear Differential Equations in Banach Spaces, Am. Math. Soc., Providence, Rhode Island (1971).Google Scholar
  114. 114.
    S. G. Krein and G. I. Laptev, “Boundary-value problems for second-order differential equations in Banach spaces, I,” Differ. Uravn., 2, No. 3, 382–390 (1966).MathSciNetMATHGoogle Scholar
  115. 115.
    S. G. Krein and G. I. Laptev, “Well-posedness of boundary-value problems for second-order differential equations in Banach spaces, II,” Differ. Uravn., 2, No. 7, 919–926 (1966).Google Scholar
  116. 116.
    S. G. Krein and G. I. Laptev, “Boundary-value problems for equations in Hilbert spaces,” Dokl. Akad. Nauk SSSR, 146, No. 3, 535–538 (1962).MathSciNetGoogle Scholar
  117. 117.
    C.-C. Kuo, “On α-times integrated C-semigroups and the abstract Cauchy problem,” Stud. Math., 142, 201–217 (2000).MathSciNetGoogle Scholar
  118. 118.
    M. M. Lavrent’ev, V. G. Romanov, and S. P. Shishatskii, Ill-Posed Problems of Mathematical Physics and Analysis, Am. Math. Soc., Providence, Rhode Island (1986).Google Scholar
  119. 119.
    D. Lesnic, S. A. Yousefi, and M. Ivanchov, “Determination of a time-dependent diffusivity from nonlocal conditions,” Appl. Math. Comput., 41, No. 1-2, 301–320 (2013).MathSciNetMATHGoogle Scholar
  120. 120.
    S. Li, B. Miara, and M. Yamamoto, “A Carleman estimate for the linear shallow shell equation and an inverse source problem,” Discrete Contin. Dyn. Syst., 23, No. 1-2, 367–380 (2009).MathSciNetMATHGoogle Scholar
  121. 121.
    Y.-C. Li and S.-Y. Shaw, “On generators of integrated C-semigroups and C-cosine functions,” Semigroup Forum, 47, 29–35 (1993).MathSciNetMATHGoogle Scholar
  122. 122.
    Y.-C. Li and S.-Y. Shaw, N-times integrated C-semigroups and the abstract Cauchy problem, Taiwan. J. Math., 1, 75–102 (1997).MathSciNetMATHGoogle Scholar
  123. 123.
    I. K. Lifanov, L. N. Poltavskii, and G. M. Vainikko, “Hypersingular integral equations and their applications,” In: Differential and Integral Equations and Their Applications. 4, Chapman & Hall/CRC Press, Boca Raton, Florida (2004), 396 p.Google Scholar
  124. 124.
    L. Ling, Y. C. Hon, and M. Yamamoto, “Inverse source identification for Poisson equation,” Inverse Probl. Sci. Eng., 13, No. 4, 433–447 (2005).MathSciNetMATHGoogle Scholar
  125. 125.
    L. Ling, M. Yamamoto, Y. C. Hon, and T. Takeuchi, “Identification of source locations in two-dimensional heat equations,” Inverse Probl., 22, No. 4, 1289–1305 (2006).MathSciNetMATHGoogle Scholar
  126. 126.
    A. Lorenzi and I. I. Vrabie, “Identification for a semilinear evolution equation in a Banach space,” Inverse Probl., 26, No. 8, 085009, (2010), 16 pp.MathSciNetMATHGoogle Scholar
  127. 127.
    L. A. Lusternik and V. I. Sobolev, Elements of Functional Analysis [in Russian], Moscow (1965).Google Scholar
  128. 128.
    A. S. Lyubanova, “Identification of a constant coefficient in a quasi-linear elliptic equation,” J. Inverse Ill-Posed Probl., 22, No. 3, 341–356 (2014).MathSciNetMATHGoogle Scholar
  129. 129.
    Y. T. Mehraliyev and F. Kanca, “An inverse boundary value problem for a second order elliptic equation in a rectangle,” Math. Model. Anal., 19, No. 2, 241–256 (2014).MathSciNetGoogle Scholar
  130. 130.
    V. A. Morozov, Methods for the Regularization of Unstable Problems [in Russian], Moscow (1987).Google Scholar
  131. 131.
    V. A. Morozov, Regular Methods for Solving Ill-Posed Problems [in Russian], Nauka, Moscow (1987).Google Scholar
  132. 132.
    R. Nagel, et al., One-Parameter Semigroups of Positive Operators, Springer-Verlag, Berlin (1986).MATHGoogle Scholar
  133. 133.
    D. G. Orlovsky, “An inverse problem for a second order differential equation in a Banach space,” Differ. Equ., 25, No. 6, 1000–1009 (1989).MathSciNetGoogle Scholar
  134. 134.
    D. G. Orlovsky, “Inverse Dirichlet problem for an equation of elliptic type,” Differ. Equ., 44, No. 1, 124–134 (2008).MathSciNetGoogle Scholar
  135. 135.
    D. G. Orlovsky, “An inverse problem of determining a parameter of an evolution equation,” Differ. Equ., 26, No. 9, 1614–1621 (1990).Google Scholar
  136. 136.
    D. G. Orlovsky, “Fredholm-type solvability of inverse boundary value problems for abstract differential equations of second order,” Differ. Equ., 28, No. 4, 1614–1621 (1992).MathSciNetGoogle Scholar
  137. 137.
    D. G. Orlovsky, “Inverse problem for elliptic equation in a Banach space with Bitsadze–Samarsky boundary value conditions,” J. Inverse Ill-Posed Probl., 21, No. 1, 141–157 (2013).MathSciNetMATHGoogle Scholar
  138. 138.
    D. Orlovsky and S. Piskarev, “On approximation of inverse problems for abstract elliptic problems,” J. Inverse Ill-posed Problems, 17, No. 8, 765–782 (2009).MathSciNetMATHGoogle Scholar
  139. 139.
    D. Orlovsky and S. Piskarev, “Approximation of inverse Bitzadze–Samarsky problem for elliptic eqaution with Dirichlet conditions,” Differ. Equ., No. 7 (2013).Google Scholar
  140. 140.
    D. Orlovsky, S. Piskarev, and R. Spigler, “On approximation of inverse problems for abstract hyperbolic equations,” Taiwan. J. Math., Vol. 14, No. 3B, 1145–1167 (2010).MathSciNetMATHGoogle Scholar
  141. 141.
    E. Ozbilge, “Determination of the unknown boundary condition of the inverse parabolic problems via semigroup method,” Bound. Value Probl., 2013, No. 2 (2013), 7 pp.Google Scholar
  142. 142.
    E. Ozbilge, “Convergence theorem for a numerical method of a 1D coefficient inverse problem,” Appl. Anal., 93, No. 8, 1611–1625 (2014).MathSciNetMATHGoogle Scholar
  143. 143.
    S. I. Piskarev, “ On approximation of holomorphic semigroups,” Tartu Ül. Toimetised, 492, 3–23 (1979).MathSciNetMATHGoogle Scholar
  144. 144.
    S. Piskarev, Differential Equations in Banach Space and Their Approximation [in Russian], Moscow (2005).Google Scholar
  145. 145.
    S. Piskarev, “Discretisation of abstract hyperbolic equation,” Tartu Ül. Toimetised, 500, 3–23 (1979).MathSciNetGoogle Scholar
  146. 146.
    S. Piskarev, “Solution of a second order evolution equation under the Krein–Fattorini conditions,” Differ. Equ., 21, 1100–1106 (1985).MathSciNetMATHGoogle Scholar
  147. 147.
    S. I. Piskarev, “Error estimates in the approximation of semigroups of operators by Padé fractions,” Izv. Vyssh. Uchebn. Zaved., Mat., 4, 33–38 (1979).MATHGoogle Scholar
  148. 148.
    S. I. Piskarev, “Approximation of positive C 0-semigroups of operators,” Differ. Uravn., 27, No. 7, 1245–1250, 1287 (1991).Google Scholar
  149. 149.
    R. Pourgholi, A. A. Molai, and T. Houlari, “Resolution of an inverse parabolic problem using sinc-Galërkin method,” TWMS J. Appl. Eng. Math., 3, No. 2, 160–181 (2013).MathSciNetMATHGoogle Scholar
  150. 150.
    R. Pourgholi and A. Esfahani, “An efficient numerical method for solving an inverse wave problem,” Int. J. Comput. Methods, 10, No. 3, 1350009, 21 pp. (2013).MathSciNetMATHGoogle Scholar
  151. 151.
    G. Da Prato and P. Grisvard, “Sommes d’operateus lieaires et equations differentielles operationnelles,” J. Math. Pures Appl., 54, No. 3, 305–387 (1975).MathSciNetMATHGoogle Scholar
  152. 152.
    G. Da Prato and P. Grisvard, “Équations d’evolution abstraites non linus eaires de type parabolique,” C. R. Acad. Sci. Paris, Ser. A-B, 283, No. 9, A709–A711 (1976).Google Scholar
  153. 153.
    A. I. Prilepko, “Inverse problems in potential theory (elliptic, parabolic, hyperbolic equations and transport equation),” Math. Notes, 14, No. 5, 755–767 (1973).Google Scholar
  154. 154.
    A. I. Prilepko, “Selected topics on inverse problems of mathematical physics,” in: Conditionally Well Posed Problems in Mathenatical Physics and Analysis (ed. V. Romanov) [in Russian], Nauka, Novosibirsk, 151–162 (1992).Google Scholar
  155. 155.
    A. I. Prilepko and A. B. Kostin, “An estimate for the spectral radius of an operator and the solvability of inverse problems for evolution equations,” Mat. Zametki, 53, No. 1, 89–94 (1993).MathSciNetMATHGoogle Scholar
  156. 156.
    A. I. Prilepko, D. G. Orlovsky, and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New York (2000).MATHGoogle Scholar
  157. 157.
    A. Prilepko, S. Piskarev, and S.-Y. Shaw, “On inverse problem for abstract differential equations in Banach spaces,” Inverse Ill-Posed Probl., 15, 831–851 (2007).MathSciNetMATHGoogle Scholar
  158. 158.
    A. I. Prilepko and I. V. Tikhonov, “Reconstruction of the inhomogeneous term in an abstract evolution equation,” Izv. Ross. Akad. Nauk Ser. Mat., 58, No. 2, 167–188 (1994).MathSciNetMATHGoogle Scholar
  159. 159.
    A. I. Prilepko and I. V. Tikhonov, “The principle of the positity of a solution to a linear inverse problem and its application to the heat conduction coefficient problem,” Dokl. Ross. Akad. Nauk, 364, No. 1, 21–23 (1999).MathSciNetMATHGoogle Scholar
  160. 160.
    A. I. Prilepko and I. V. Tikhonov, “Uniqueness of the solution of an inverse problem for an evolution equation and applications to the transfer equation,” Mat. Zametki, 51, No. 2, 77–87, 158 (1992).Google Scholar
  161. 161.
    A. I. Prilepko and I. V. Tikhonov, “An inverse problem with final overdetermination for an abstract evolution equation in an ordered Banach space,” Funkts. Anal. Prilozh., 27, No. 1, 81–83 (1993); translation in Funct. Anal. Appl., 27, No. 1, 68–69 (1993).Google Scholar
  162. 162.
    A. I. Prilepko and D. S. Tkachenko, “The Fredholm property of the inverse source problem for parabolic systems,” Differ. Equ., 39, No. 12, 1785–1793 (2003).MathSciNetMATHGoogle Scholar
  163. 163.
    A. I. Prilepko and D. S. Tkachenko, “The Fredholm property and the well-posedness of the inverse source problem with integral overdetermination,” Comput. Math. Math. Phys., 43, No. 9, 1338–1347 (2003).MathSciNetMATHGoogle Scholar
  164. 164.
    A. I. Prilepko and D. S. Tkachenko, “Properties of solutions of a parabolic equation and the uniqueness of the solution of the inverse source problem with integral overdetermination,” Comput. Math. Math. Phys., 43, No. 4, 537–546 (2003).MathSciNetMATHGoogle Scholar
  165. 165.
    A. I. Prilepko and D. S. Tkachenko, “Inverse problem for a parabolic equation with integral overdetermination,” J. Inverse Ill-Posed Probl., 11, No. 2, 191–218 (2003).MathSciNetMATHGoogle Scholar
  166. 166.
    A. I. Prilepko and D. S. Tkachenko, “An inverse problem for a parabolic equation with final overdetermination,” Ill-Posed Inverse Probl., 345–381 (2002).Google Scholar
  167. 167.
    S. G. Pyatkov and A. G. Borichevskaya, “On an inverse problem for a parabolic equation with Cauchy data on a part of the lateral surface of a cylinder,” Sibirsk. Mat. Zh., 54, No. 2, 436–449 (2013); translation in Sib. Math. J., 54, No. 2, 341–352 (2013).Google Scholar
  168. 168.
    Rakesh and P. Sacks, “Uniqueness for a hyperbolic inverse problem with angular control on the coefficients,” J. Inverse Ill-Posed Probl., 19, No. 1, 107–126 (2011).MathSciNetMATHGoogle Scholar
  169. 169.
    A. Rhoden, Applications and adaptations of a globally convergent numerical method in inverse problems, Ph.D. Thesis, The University of Texas at Arlington, (2013), 93 pp.Google Scholar
  170. 170.
    A. Rhoden, N. Patong, Y. Liu, J. Su, and H. Liu, “A globally convergent numerical method for coefficient inverse problems with time-dependent data. Applied inverse problems,” Springer Proc. Math. Stat., 48, 105–128, Springer, New York (2013).Google Scholar
  171. 171.
    A. V. Rozanova, “Controllability in a nonlinear parabolic problem with integral overdetermination,” Differ. Uravn., 40, No. 6, 798–815, 862 (2004); translation in Differ. Equ., 40, No. 6, 853–872 (2004).Google Scholar
  172. 172.
    K. Sakamoto and M. Yamamoto, “Inverse heat source problem from time distributing overdetermination,” Appl. Anal., 88, No. 5, 735–748 (2009).MathSciNetMATHGoogle Scholar
  173. 173.
    A. A. Samarskij and E. S. Nikolaev, Numerical Methods for Grid Equations, Vol. I: Direct Methods; Vol. II: Iterative Methods; Birkhäuser Verlag (1989).Google Scholar
  174. 174.
    A. A. Samarskii, The Theory of Difference Schemes, Marcel Dekker, New York (2001).MATHGoogle Scholar
  175. 175.
    A. A. Samarskii and P. N. Vabishchevich, Numerical Methods for Inverse Problems in Mathematical Physics, URSS (2004).Google Scholar
  176. 176.
    A. A. Samarskii, P. P. Matus, and P. N. Vabishchevich, Difference Schemes with Operator Factors, Kluwer Academic Publishers, Dordrecht (2002).MATHGoogle Scholar
  177. 177.
    A. Yu. Shcheglov, “Iterative method for recovery a nonlinear source in a hyperbolic equation with final overdetermination,” J. Inverse Ill-Posed Probl., 10, No. 6, 629–641 (2002).MathSciNetMATHGoogle Scholar
  178. 178.
    A. Yu. Shcheglov, “A method for determining the coefficients of a quasilinear hyperbolic equation,” Zh. Vychisl. Mat. Mat. Fiz., 46, No. 5, 813–833 (2006); translation in Comput. Math. Math. Phys., 46, No. 5, 776–795 (2006).Google Scholar
  179. 179.
    A. Shidfar, A. Babaei, and A. Molabahrami, “Solving the inverse problem of identifying an unknown source term in a parabolic equation,” Comput. Math. Appl., 60, No. 5, 1209–1213 (2010).MathSciNetMATHGoogle Scholar
  180. 180.
    Y. V. Sidorov, M. V. Fedoruk, and M. I. Shabunin, Lectures on the Theory of Function of a Complex Variable [in Russian], Nauka, Moscow (1982).Google Scholar
  181. 181.
    H. A. Snitko, “Determination of the lowest coefficient for a one-dimensional parabolic equation in a domain with free boundary,” Mat. Zh., 65, No. 11, 1531–1549 (2013).MathSciNetGoogle Scholar
  182. 182.
    G. A. Snitko, “The inverse problem of finding time-dependent functions in a lower-order coefficient in a parabolic problem in a free boundary domain,” Mat. Metod. Fiz.-Mekh. Polya, 56, No. 2, 37–47 (2013); translation in J. Math. Sci. (N.Y.), 203, No. 1, 40–54 (2014).Google Scholar
  183. 183.
    P. E. Sobolevskii, “On elliptic equations in a Banach space,” Differ. Equ., 4, No. 7, 1346–1348 (1969).MathSciNetGoogle Scholar
  184. 184.
    P. E. Sobolevskii, “Some properties of the solutions of differential equations in fractional spaces,” Tr. Nauchn. Issled. Inst. Mat. Voronezh. Gos. Univ., 74, 68–76 (1975).Google Scholar
  185. 185.
    P. E. Sobolevskii, “The theory of semigroups and the stability of difference schemes,” In: Operator Theory in Function Spaces [in Russian], Proc. School, Novosibirsk (1975), pp. 304–337; Nauka, Sibirsk. Otdel., Novosibirsk (1977).Google Scholar
  186. 186.
    P. E. Sobolevskii and L. M. Chebotaryeva, “Approximate solution of the Cauchy problem for an abstract hyperbolic equation by the method of lines,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 5 (180), 103–116 (1977).Google Scholar
  187. 187.
    V. V. Solov’ev, “Inverse problems of source determination for the two-dimensional Poisson equation,” Comput. Math. Math. Phys., 44, No. 5, 815–824 (2004).MathSciNetGoogle Scholar
  188. 188.
    V. V. Soloviev, “Inverse problems of determining a source of a Poisson equation on the plain,” Zh. Vychisl. Mat. Mat. Fiz., 44, No. 5, 862–871 (2004).MathSciNetGoogle Scholar
  189. 189.
    V. V. Solov’ev, “Inverse problems for elliptic equations on the plane. I,” Differ. Uravn., 42, No. 8, 1106–1114, 1151 (2006); translation in Differ. Equ., 42, No. 8, 1170–1179 (2006).Google Scholar
  190. 190.
    V. V. Solov’ev, “Inverse problems for elliptic equations on the plane. II,” Differ. Uravn., 43, No. 1, 101–109, 142 (2007); translation in Differ. Equ., 43, No. 1, 108–117 (2007).Google Scholar
  191. 191.
    V. V. Solov’ev, “Inverse coefficient problems for elliptic equations in a cylinder: I,” Differ. Uravn., 49, No. 8, 1026–1035 (2013); translation in Differ. Equ., 49, No. 8, 996–2005 (2013).Google Scholar
  192. 192.
    V. V. Solov’ev, “Inverse problems for elliptic equations in the space. II,” Differ. Uravn., 47, No. 5, 714–723 (2011); translation in Differ. Equ., 47, No. 5, 715–725 (2011).Google Scholar
  193. 193.
    V. V. Solov’ev, “The inverse problem of determining the coefficient in the Poisson equation in a cylinder,” Zh. Vychisl. Mat. Mat. Fiz., 51, No. 10, 1849–1856 (2011); translation in Comput. Math. Math. Phys., 51, No. 10, 1738–1745 (2011).Google Scholar
  194. 194.
    V. V. Solov’ev, “Inverse problems of determining the source and coefficient in an elliptic equation in a rectangle,” Zh. Vychisl. Mat. Mat. Fiz., 47, No. 8, 1365–1377 (2007); translation in Comput. Math. Math. Phys., 47, No. 8, 1310–1322 (2007).Google Scholar
  195. 195.
    M. Sova, “Cosine operator functions,” Rozpr. Mat., 49, 1–47 (1966).MathSciNetMATHGoogle Scholar
  196. 196.
    P. Stefanov and G. Uhlmann, “Recovery of a source term or a speed with one measurement and applications,” Trans. Am. Math. Soc., 365, No. 11, 5737–5758 (2013).MathSciNetMATHGoogle Scholar
  197. 197.
    F. Stummel, “Diskrete Konvergenz linearer Operatoren. III,” In: Linear Operators and Approximation (Proc. Conf., Oberwolfach, 1971), 196–216; Intern. Ser. Numer. Math., Vol. 20. Birkhäuser, Basel (1972).Google Scholar
  198. 198.
    V. Thomée, Galërkin Finite Element Methods for Parabolic Problems, Springer, Berlin (1997).MATHGoogle Scholar
  199. 199.
    I. V. Tikhonov, “Solvability of a linear inverse problem with final overdetermination in a Banach space of L 1-type,” Fundam. Prikl. Mat., 4, No. 2, 691–708 (1998).MathSciNetMATHGoogle Scholar
  200. 200.
    I. V. Tikhonov, “A connection between inverse problems and terminal and integral overdeterminations,” Usp. Mat. Nauk, 47, No. 4(286), 211–212 (1992).MathSciNetGoogle Scholar
  201. 201.
    I. V. Tikhonov and Yu. S. Eidelman, “A uniqueness criterion in an inverse problem for an abstract differential equation with a nonstationary inhomogeneous term,” Math. Notes, 77, No. 1–2, 246–262 (2005).MathSciNetMATHGoogle Scholar
  202. 202.
    I. V. Tikhonov and Yu. S. Eidelman, “Theorems on the mapping of the point spectrum for C 0-semigroups and their application to uniqueness problems for abstract differential equations,” Dokl. Akad. Nauk, 394, No. 1, 32–35 (2004).MathSciNetGoogle Scholar
  203. 203.
    I. V. Tikhonov and Yu. S. Eidelman, “Uniqueness of the solution of a two-point inverse problem for an abstract differential equation with an unknown parameter, Differ. Equ., 36, No. 8, 1256–1258 (2000).MathSciNetMATHGoogle Scholar
  204. 204.
    A. N. Tikhonov, A. S. Leonov, and A. G. Yagola, Nonlinear Ill-Posed Problems, Vols. 1, 2. Chapman & Hall, London (1998).MATHGoogle Scholar
  205. 205.
    C. C. Travis and G. F. Webb “Second order differential equations in Banach space,” In: Nonlinear Equations in Abstract Space, 331–361 (1978).Google Scholar
  206. 206.
    C. C. Travis and G. F. Webb “Cosine families and abstract non-linear second order differential equations,” Acta Math. Acad. Sci. Hung., 32, No. 3–4, 75–96 (1978).MATHGoogle Scholar
  207. 207.
    T. Ushijima, “Approximation theory for semi-groups of linear operators and its application to approximation of wave equations,” Jpn. J. Math. (N.S.), 1, No. 1, 185–224 (1975/76).Google Scholar
  208. 208.
    G. Vainikko, Funktionalanalysis der Diskretisierungsmethoden, Leipzig, B. G. Teubner Verlag (1976).MATHGoogle Scholar
  209. 209.
    G. Vainikko, “Approximative methods for nonlinear equations (two approaches to the convergence problem),” Nonlinear Anal., 2, 647–687 (1978).MathSciNetMATHGoogle Scholar
  210. 210.
    G. Vainikko and S. Piskarev, “Regularly compatible operators,” Izv. Vuzov. Mat., 10, 25–36 (1977).MathSciNetMATHGoogle Scholar
  211. 211.
    K. Van Bockstal and M. Slodichka, “Determination of a time-dependent diffusivity in a nonlinear parabolic problem,” Inverse Probl. Sci. Eng., 23, No. 2, 307–330 (2015).MathSciNetMATHGoogle Scholar
  212. 212.
    V. V. Vasil’ev, S. G. Krein, and S. Piskarev, “Operator semigroups, cosine operator functions, and linear differential equations,” J. Sov. Math., 54, No. 4, 1042–1129 (1991).MATHGoogle Scholar
  213. 213.
    V. V. Vasil’ev and S. I. Piskarev, “Differential equations in Banach spaces. II. Theory of cosine operator functions,” J. Math. Sci. (N.Y.), 122, No. 2, 3055–3174 (2004).MathSciNetMATHGoogle Scholar
  214. 214.
    V. V. Vasil’ev and S. I. Piskarev, Differential Equations in Banach Spaces I. Semigroup Theory [in Russian], Moscow State University Publish House (1996), 164 p.Google Scholar
  215. 215.
    J. Voigt, “On the convex compactness property for the strong operator topology,” Note Mat., 12, 259–269 (1992).MathSciNetMATHGoogle Scholar
  216. 216.
    B. Wang, “Moving least squares method for a one-dimensional parabolic inverse problem,” Abstr. Appl. Anal., Art. ID 686020 (2014), 12 pp.Google Scholar
  217. 217.
    Y. B. Wang, J. Cheng, J. Nakagawa, and M. Yamamoto, “A numerical method for solving the inverse heat conduction problem without initial value,” Inverse Probl. Sci. Eng., 18, No. 5, 655–671 (2010).MathSciNetMATHGoogle Scholar
  218. 218.
    T. Wei and M. Yamamoto, “Reconstruction of a moving boundary from Cauchy data in onedimensional heat equation,” Inverse Probl. Sci. Eng., 17, No. 4, 551–567 (2009).MathSciNetMATHGoogle Scholar
  219. 219.
    J. Wen, M. Yamamoto, and T. Wei, “Simultaneous determination of a time-dependent heat source and the initial temperature in an inverse heat conduction problem,” Inverse Probl. Sci. Eng., 21, No. 3, 485–499 (2013).MathSciNetMATHGoogle Scholar
  220. 220.
    M. Yamamoto and Xu Zhang, “Global uniqueness and stability for an inverse wave source problem for less regular data,” J. Math. Anal. Appl., 263, No. 2, 479–500 (2001).MathSciNetMATHGoogle Scholar
  221. 221.
    M. Yamamoto and Jun Zou, “Simultaneous reconstruction of the initial temperature and heat radiative coefficient,” In: Special issue to celebrate Pierre Sabatier’s 65th birthday (Montpellier, 2000), Inverse Probl., 17, No. 4, 1181–1202.Google Scholar
  222. 222.
    L. Yang, M. Dehghan, Jian-Ning Yu, and Guan-Wei Luo, “Inverse problem of time-dependent heat sources numerical reconstruction,” Math. Comput. Simul., 81, No. 8, 1656–1672 (2011).MathSciNetMATHGoogle Scholar
  223. 223.
    N. Yaparova, “Numerical methods for solving a boundary-value inverse heat conduction problem,” Inverse Probl. Sci. Eng., 22, No. 5, 832–847 (2014).MathSciNetMATHGoogle Scholar
  224. 224.
    O. Zair, “Determination of point sources in vibrating plate by boundary measurements,” Appl. Anal., 92, No. 10, 2061–2075 (2013).MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  2. 2.Scientific Research Computer CenterM. V. Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Russian Institute for Scientific and Technical InformationMoscowRussia

Personalised recommendations