Advertisement

Journal of Mathematical Sciences

, Volume 230, Issue 5, pp 794–798 | Cite as

On the Solvability of a Matrix Boundary-Value Problem

  • S. M. Chuiko
Article
  • 9 Downloads

Abstract

We found solvability conditions and a construction of the generalized Green operator for a linear matrix boundary-value problem; we present an operator that reduces a linear matrix equation to the conventional linear Noether boundary-value problem. To solve a linear matrix system, we use the operator that reduces a linear matrix equation to a linear algebraic equation with a rectangular matrix.

Keywords

Green operator Noether boundary-value problem matrix differential equation 

AMS Subject Classification

34B15 34B40 34C11 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. V. Azbelev, V. P. Maksimov, and L. F. Rakhmatullina, Introduction to the Theory of Linear Functional Differential Equations, World Federation Publ., Atlanta (1995).MATHGoogle Scholar
  2. 2.
    R. Bellman, Introduction to Matrix Analysis, McGraw-Hill, New York (1970).MATHGoogle Scholar
  3. 3.
    A. A. Boichuk and S. A. Krivosheya, “Criterion of the solvability of matrix equations of the Lyapunov type,” Ukr. Math., 50, No. 8, 1162–1169 (1998).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    A. A. Boichuk and S. A. Krivosheya, “A critical periodic boundary-value problem for a matrix Riccati equation,” Differ. Equ., 37, No. 4, 464–471 (2001).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    A. A. Boichuk, A. A. Pokutnyi, and V. F. Chistyakov, “Application of perturbation theory to the solvability analysis of differential algebraic equations,” Vychisl. Mat. Mat. Fiz., 53, No. 6, 958–969 (2013).MathSciNetMATHGoogle Scholar
  6. 6.
    A. A. Boichuk and A. M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems, VSP, Utrecht, Boston (2004).CrossRefMATHGoogle Scholar
  7. 7.
    A. N. Bondarev and V. N. Laptinskii, “Multipoint boundary-value problem for the Lyapunov equation in the case of strong degeneration of the boundary conditions,” Differ. Equ., 47, 778–786 (2011).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Yu. E. Boyarintsev and V. F. Chistyakov, Algebraic-Differential Systems. Methods of Solution [in Russian], Nauka, Novosibirsk (1998).Google Scholar
  9. 9.
    S. L. Campbell, Singular Systems of Differential Equations, Pitman, San Francisco–London–Melbourne (1980).MATHGoogle Scholar
  10. 10.
    S. M. Chuiko, “Linear Noether boundary-value problems for differential-algebraic systems,” Kompl. Issled. Model., 5, No. 5, 769–783 (2013).Google Scholar
  11. 11.
    S. M. Chuiko, “Green operator for a linear Noether boundary-value problem for a matrix differential equation,” Dinam. Sist., 4 (32), Nos. 1-2, 101–107 (2014).MATHGoogle Scholar
  12. 12.
    S. M. Chuiko, “On solutions of a generalized Sylvester matrix equation,” Chebyshev. Sb., 16, No. 1, 52–66 (2015).MathSciNetGoogle Scholar
  13. 13.
    S. M. Chuiko, “On solutions of linear matrix equations,” Nauch. Vestn. Kharkov. Univ. Ser. Mat. Prikl. Mat. Mekh., 81, 28–34 (2015).Google Scholar
  14. 14.
    S. M. Chuiko, “Green operator of a generalized matrix linear differential-algebraic boundary-value problem,” Sib. Mat. Zh., 56, No. 4, 942–951 (2015).MathSciNetCrossRefGoogle Scholar
  15. 15.
    S. M. Chuiko, “A generalized matrix differential-algebraic equation,” J. Math. Sci. (N.Y.), 210, No. 1, 9–21 (2015).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    S. M. Chuiko, “Generalized Green operator of Noetherian boundary-value problem for matrix differential equation,” Izv. Vyssh. Ucheb. Zaved., 8, 74–83 (2016).MathSciNetMATHGoogle Scholar
  17. 17.
    V. N. Laptinsky and I. I. Makovetsky, “Constructive analysis of a two-point boundary-value problem for a nonlinear Lyapunov equation,” Differ. Uravn., 41, No. 7, 994–996 (2005).MathSciNetMATHGoogle Scholar
  18. 18.
    A. M. Samoilenko, M. I. Shkil, and V. P. Yakovets, Linear Systems of Differential Equations with Degeneration [in Ukrainian], Vyshcha Shkola, Kyiv (2000).Google Scholar
  19. 19.
    V. V. Voevodin and Yu. A. Kuznetsov, Matrices and Computations [in Russian], Nauka, Moscow (1984).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Donbass State Pedagogical UniversitySlavyanskUkraine

Personalised recommendations