Skip to main content
Log in

Quasielliptic Operators and Equations Not Solvable with Respect to the Higher Order Derivative

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We consider a class of quasielliptic operators in Rn and establish the isomorphism property in special weighted Sobolev spaces. In more general weighted spaces, we obtain the unique solvability conditions for quasielliptic equations and prove estimates for solutions. Based on the obtained results, we study the solvability of the initial problem for equations that are not solvable with respect to the higher order derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. L. Sobolev, Cubature Formulas and Modern Analysis: An Introduction, Gordon and Breach, Montreux (1992).

    MATH  Google Scholar 

  2. M. Cantor, “Spaces of functions with asymptotic conditions on ℝ,” Indiana Univ. Math. J. 24, No. 9, 897-902 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  3. R. C. McOwen, The behavior of the Laplacian on weighted Sobolev spaces,” Commun. Pure Appl. Math. 32, No. 6, 783–795 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  4. L. A. Bagirov and V. A. Kondratiev, “Elliptic equations in R n,” Differ. Equations 11, 375–379 (1975).

    Google Scholar 

  5. M. Cantor, “Some problems of global analysis on asymptotically simple manifolds,” Compos. Math. 38, No. 1, 3–35 (1979).

    MathSciNet  MATH  Google Scholar 

  6. R. C. McOwen, On elliptic operators in R n,” Commun. Partial Differ. Equations 5, No. 9, 913–933 (1980).

  7. R. B. Lockhart, “Fredholm properties of a class of elliptic operators on non-compact manifolds,” Duke Math. J. 48, No. 1, 289–312 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  8. Y. Choquet-Bruhat and D. Christodoulou, “Elliptic systems in H(s.δ) spaces on manifolds which are Euclidean at infinity,” Acta Math. 146, No. 1/2, 129–150 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  9. R. B. Lockhart and R. C. McOwen, “Elliptic differential operators on noncompact manifolds,” Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 12, No. 3, 409–447 (1985).

    MathSciNet  MATH  Google Scholar 

  10. G. V. Demidenko, “On quasielliptic operators in R n,” Sib. Math. J. 39, No. 5, 884–893 (1998).

    Article  Google Scholar 

  11. G. N. Hile, “Fundamental solutions and mapping properties of semielliptic operators,” Math. Nachr. 279, No. 13/14, 1538–1564 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  12. G. V. Demidenko, “Quasielliptic operators and Sobolev type equations,” Sib. Math. J. 49, No. 5, 842–851 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  13. G. V. Demidenko, “Quasielliptic operators and Sobolev type equations II,” Sib. Math. J. 50, No. 5, 838–845 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  14. G. V. Demidenko, “On weighted Sobolev spaces and integral operators determined by quasielliptic equations,” Russ. Acad. Sci., Dokl., Math. 49, No. 1, 113–118 (1994).

    Google Scholar 

  15. L. D. Kudryavtsev, “Imbedding theorems for classes of functions defined on the entire space or on a half space. I. II,” Am. Math. Soc., Transl., II. Ser. 74, 199–225; 227–260 (1968).

  16. L. Nirenberg and H. F. Walker, “The null spaces of elliptic partial differential operators in R n,” J. Math. Anal. Appl. 42, No. 2, 271–301 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Cantor, “Elliptic operators and the decomposition of tensor fields,” Bull. Am. Math. Soc., New Ser. 5, No. 3, 235–262 (1981).

  18. S. L. Sobolev, Selected Works. I Springer, New York (2006).

  19. G. V. Demidenko and S. V. Uspenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker, New York etc. (2003).

    MATH  Google Scholar 

  20. S. V. Uspenskii, “The representation of functions defined by a certain class of hypoelliptic operators,” Proc. Steklov Inst. Math. 117, 343–352 (1972).

  21. P. I. Lizorkin, “Generalized Liouville differentiation and the multiplier method in the theory of imbeddings of classes of differentiable functions,” Proc. Steklov Inst. Math. 105, 105–202 (1969).

  22. G. H. Hardy, J. E. Littlewood, and G. Pólia, Inequalities, Cambridge Univ. Press, Cambridge (1934).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Demidenko.

Additional information

Translated from Sibirskii Zhurnal Chistoi i Prikladnoi Matematiki 16, No. 3, 2016, pp. 15-26.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demidenko, G.V. Quasielliptic Operators and Equations Not Solvable with Respect to the Higher Order Derivative. J Math Sci 230, 25–35 (2018). https://doi.org/10.1007/s10958-018-3723-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-018-3723-2

Navigation