Skip to main content
Log in

Liouville-Type Theorems for Theories of Riemannian Almost Product Structures and Submersions

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We prove Liouville type theorems, i.e., non-existence theorems for special classes of Riemannian almost product structures and submersions, that generalize well-known similar results of the theory of compact Riemannian manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. H.Wu, The Bochner Technique in Differential Geometry, Harwood Acad. Publ., Harwood (1987).

  2. S. Pigola, M. Rigoli, and A. G. Setti, Vanishing and Finiteness Results in Geometric Analysis. A Generalization of the Bochner Technique, Birkhäuser, Basel (2008).

  3. Sh. Koboyashi and K. Nomizu, Foundations of Differential Geometry. I, Interscience Publ., New York etc. (1963).

    Google Scholar 

  4. S. T. Yau, “Some function-theoretic properties of complete Riemannian manifold and their application to geometry,” Indiana Univ. Math. J. 25, No. 7, 659–670 (1976); erratum ibid. 31, 607 (1982).

  5. A. Caminha, P. Souza, and F. Camargo, “Complete foliations of space forms by hypersurfaces,” Bull. Braz. Math. Soc. 41, No. 3, 339–353 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Caminha, “The geometry of closed conformal vector fields on Riemannian spaces,” Bull. Braz. Math. Soc. 42, No. 2, 277–300 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  7. S. E. Stepanov, “An integral formula for a Riemannian almost-product manifold,” Tensor, New Ser. 55, No. 3, 209–214 (1994).

  8. S. E. Stepanov, “An integral formula for a compact manifold with a Riemannian almost product structure,” Russ. Math. 38, No. 7, 66–70 (1994).

    MathSciNet  MATH  Google Scholar 

  9. S. E. Stepanov, “Geometry of projective submersions of Riemannian manifolds,” Russ. Math. 43, No. 9, 44–50 (1999).

    MathSciNet  MATH  Google Scholar 

  10. S. E. Stepanov, “On the global theory of projective mappings,” Math. Notes, 58, No. 1, 752–756 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  11. S. E. Stepanov, “O(n) × O(m−n)-structures on m-dimensional manifolds, and submersions of Riemannian manifolds,” St. Petersb. Math. J. 7, No. 6, 1005–1016 (1996).

    MathSciNet  Google Scholar 

  12. I. A. Alexandrova, J. Mikeš, S. E. Stepanov, and I. I. Tsyganok, “Liouville type theorems in the theory of mappings of complete Riemannian manifolds,” J. Math. Sci., New York 221, No. 6, 737-744 (2017).

  13. M. M. Postnikov, Lectures on Geometry. IV: Differential Geometry [in Russian], Nauka, Moscow (1988).

  14. A. Montesinos, “On certain classes of almost product structures,” Mich. Math. J. 30, No. 1, 31–36 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  15. B. L. Reinhart, Differential Geometry of Foliations. The Fundamental Integrability Problem, Springer, Berlin etc. (1983).

  16. A. Besse, Einstein Manifolds, Springer, Berlin etc. (1987).

  17. M. Lizyńczyk and P. Walczak, “New integral formulae for two complementary orthogonal distributions on Riemannian manifolds,” Ann. Global Anal. Geom. 48, No. 2, 195–209 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Hangan, “On totally geodesic distributions of planes,” Coll. Math. Soc. János Bolyai 46, 519–530 (1988).

    MathSciNet  MATH  Google Scholar 

  19. M. A. Akivis, “Flat hyperdistributions in P n,” Math. Notes 36, No. 2, 599–604 (1984).

    Article  MATH  Google Scholar 

  20. R. Ponge and H. Reckziegel, “Twisted product in pseudo-Riemannian geometry,” Geom. Dedicata 48, No. 1, 15–25 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  21. S. E. Stepanov, “One class of Riemannian almost product structures,” Sov. Math. 33, No. 7, 51–59 (1989).

    MATH  Google Scholar 

  22. A. Grigor’yan, Heat Kernel and Analysis on Manifolds, Am. Math. Soc., Providence, RI (2009).

  23. D. Gromoll, W. Klingenberg, and W. Meyer, Riemannsche Geometrie im Grossen, Springer, Berlin etc. (1968).

    Book  MATH  Google Scholar 

  24. B. O’Neil, “The fundamental equations of a submersion,” Mich. Math. J. 13, No. 4, 459–469 (1966).

    Article  MathSciNet  Google Scholar 

  25. R. Zulanke and P. Vintgen Differential Geometry and Vector Bundles [in Russian], Nauka, Moscow (1975).

  26. T. Nore, “Second fundamental form of a map,” Ann. Mat. Pura Appl., IV. Ser. 146, 281–310 (1987).

  27. T. Ishihara, “A mapping of Riemannian manifolds which preserves harmonic functions,” J. Math. Kyoto Univ. 19, No. 2, 215–229 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  28. S. E. Stepanov, “Weyl submersions,” Russ. Math. 36, No. 5, 87–89 (1992).

    MathSciNet  MATH  Google Scholar 

  29. C. Pro and F. Wilhelm, “Riemannian submersions need not preserve positive Ricci curvature,” Proc. Am. Math. Soc. 142, No. 7, 2529–2535 (2014).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Aleksandrova.

Additional information

Translated from Sibirskii Zhurnal Chistoi i Prikladnoi Matematiki 16, No. 4, 2016, pp. 3-12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrova, I.A., Stepanov, S.E. & Tsyganok, I.I. Liouville-Type Theorems for Theories of Riemannian Almost Product Structures and Submersions. J Math Sci 230, 1–9 (2018). https://doi.org/10.1007/s10958-018-3720-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-018-3720-5

Navigation