Heisenberg Uncertainty Principles for the Dunkl Multipier Operators

We prove a Heisenberg type and a Heisenberg–Pauli–Weyl type inequalities for a class of Dunkl multipier operators. The constants in the main inequalities are sharp, and the results are confirmed by examples.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    I. I. Hirschman, “A note on entropy,” Am. J. Math. 79, 152–156 (1957).

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    J.F. Price, “Inequalities and local uncertainty principles,” J. Math. Phys. 24, 1711–1714 (1983).

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    E. Laeng and C. Morpurgo, “An uncertainty inequality involving L 1-norms,” Proc. Am. Math. Soc. 127, No. 12, 3565–3572 (1999).

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    M. Rösler and M. Voit, “Markov processes related with Dunkl operator,” Adv. Appl. Math. 21, No. 4, 575–643 (1998).

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    M. F. E. de Jeu, “The Dunkl transform,” Invent. Math. 113, No. 1, 147–162 (1993).

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    E. M. Opdam, “Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group,” Compos. Math. 85, No. 3, 333–373 (1993).

    MathSciNet  MATH  Google Scholar 

  7. 7.

    M. Rösler, “Positivity of Dunkl’s intertwining operator,” Duke Math. J. 98, No. 3, 445–463 (1999).

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    C. F. Dunkl, “Hankel transforms associated to finite reflection groups,” Contemp. Math. 138, 123–138 (1992).

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    M. Rӧsler, “An uncertainty principle for the Dunkl transform,” Bull. Aust. Math. Soc. 59, No. 3, 353–360 (1999).

    MathSciNet  Article  Google Scholar 

  10. 10.

    T. Kawazoe and H. Mejjaoli, “Uncertainty principles for the Dunkl transform,” Hiroshima Math. J. 40, No. 2, 241–268 (2010).

    MathSciNet  MATH  Google Scholar 

  11. 11.

    F. Soltani, “A general form of Heisenberg-Pauli-Weyl uncertainty inequality for the Dunkl transform,” Integral Transforms Spec. Funct. 24 No. 5, 401–409 (2013).

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    S. Ghobber, “Uncertainty principles involving L 1-norms for the Dunkl transform,” Integral Transforms Spec. Funct. 24, No. 6, 491–501 (2013).

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    F. Soltani, “Multiplier operators and extremal functions related to the dual Dunkl-Sonine operator,” Acta Math. Sci., Ser. B 33, No. 2, 430–442 (2013).

  14. 14.

    F. Soltani, “Dunkl multiplier operators and applications,” Integral Transforms Spec. Funct. 25, No. 11, 898-908 (2014).

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    F. Soltani, “Littlewood-Paley g-function in the Dunkl analysis on ℝd,” J. Inequal. Pure Appl. Math. 6, No. 3, Paper No. 84, 13 p. (2005).

  16. 16.

    F. Soltani, “Maximal Bochner-Riesz operators on Hardy type spaces in the Dunkl setting,” Integral Transforms Spec. Funct. 24, No. 8, 613–627 (2013).

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Soltani.

Additional information

Translated from Problemy Matematicheskogo Analiza 90, January 2018, pp. 83-89.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soltani, F., Rejeb, S.B. Heisenberg Uncertainty Principles for the Dunkl Multipier Operators. J Math Sci 228, 695–704 (2018). https://doi.org/10.1007/s10958-017-3657-0

Download citation