Integer Realization of Spline-Wavelet Decomposition

We consider integer spline-wavelet algorithms for processing digital flows. We obtain integer variants of the decomposition and reconstruction formulas and give an example demonstrating the practical realizability of the proposed algorithms.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Yu. K. Dem’yanovich, Theory of Spline-Wavelets [in Russian], St. Petersb. Univ. Press, St. Petersburg (2013).

    Google Scholar 

  2. 2.

    Yu. K. Dem’yanovich and A. Yu. Ponomareva, “Adaptive spline-wavelet processing of a discrete flow,” J. Math. Sci., New York 210, No. 4, 371-390 (2015).

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Dem’yanovich.

Additional information

Translated from Problemy Matematicheskogo Analiza 90, January 2018, pp. 35-48.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dem’yanovich, Y.K., Ivantsova, O.N. & Ponomareva, A.Y. Integer Realization of Spline-Wavelet Decomposition. J Math Sci 228, 639–654 (2018). https://doi.org/10.1007/s10958-017-3652-5

Download citation