The Hurwitz Product, p-Adic Topology on ℤ, and Fundamental Solution to Linear Differential Equation in the Ring ℤ[[x]]

We study the linear inhomogeneous first order differential equation by′ + f(x) = y in the ring of formal power series with integer coefficients. Using the p-adic topology on the ring of integers, we construct a counterpart of the Hurwitz product of the Euler series and an arbitrary formal power series with integer coefficients. It is shown that the Euler series can be interpreted as the fundamental solution to the equation under consideration. Bibliography: 8 titles.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    S. L. Gefter and A. B. Goncharuk, “Fundamental solution of an implicit linear inhomogeneous first order differential equation over an arbitrary ring,” J. Math. Sci., New York 219, No. 6, 922–935 (2016).

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    L. Biberbach, Analytic Continuation [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  3. 3.

    R. P. Stanley, Enumerative Combinatorics, Cambridge Univ. Press, Cambridge (2012).

    Google Scholar 

  4. 4.

    S. L. Gefter and T. E. Stulova, “Fundamental solution of the simplest implicit linear differential equation in a vector space,” J. Math. Sci., New York 207, No. 2, 166–175 (2015).

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Z. I. Borevich and I. R. Shafarevich, Number Theory [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  6. 6.

    H. Grauert and R. Remmert, Analytsche Stellenalgebren, Springer, Berlin etc. (1971).

    Google Scholar 

  7. 7.

    V. P. Platonov and A. S. Rapinchuk, Algebraic Groups and Number Theory, Academic Press, Boston, MA (1994).

    Google Scholar 

  8. 8.

    V. S. Vladimirov, Generalized Functions in Mathematical Physics [in Russian], Nauka, Moscow (1979).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. L. Gefter.

Additional information

Translated from Problemy Matematicheskogo Analiza 90, January 2018, pp. 29-33.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gefter, S.L., Goncharuk, A.B. The Hurwitz Product, p-Adic Topology on ℤ, and Fundamental Solution to Linear Differential Equation in the Ring ℤ[[x]]. J Math Sci 228, 633–638 (2018). https://doi.org/10.1007/s10958-017-3651-6

Download citation