The Case of Integrable Systems with Dissipation on the Tangent Bundle of a Multidimensional Sphere

We establish the integrability of dynamical systems of some classes arising in multidimensional dynamics. The force fields under consideration possess the so-called variable dissipation with zero mean and generalize the studied earlier ones.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    M. V. Shamolin, “New case of integrability in the dynamics of a multidimensional solid in a nonconservative field,” Dokl. Phys. 58, No. 11, 496–499 (2013).

    Article  Google Scholar 

  2. 2.

    M. V. Shamolin, “Integrable variable dissipation systems on the tangent bundle of a multidimensional sphere and some applications” [in Russian], Fundam. Prikl. Mat. 20, No. 4, 3–231 (2015).

  3. 3.

    M. V. Shamolin, “Complete list of the first integrals of dynamic equations of a multidimensional solid in a nonconservative field under the assumption of linear damping,” Dokl. Phys. 60, No. 10, 471–475 (2015).

    Article  Google Scholar 

  4. 4.

    M. V. Shamolin, “Integrable systems with variable dissipation on the tangent bundle of a sphere,” PMA 86, 139–151 (2016). J. Math. Sci., New York 219, No. 2, 321–335 (2016).

  5. 5.

    M. V. Shamolin, “Dynamical systems with variable dissipation: Approaches, methods, and applications,” J. Math. Sci., New York 162, No. 6, 741–908 (2009).

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    M. V. Shamolin, “Variety of integrable cases in dynamics of low- and multidimensional rigid bodies in nonconservative force fields,” J. Math. Sci., New York 204, No. 4, 379-530 (2015).

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    M. V. Shamolin, “An integrable case of dynamical equations on so(4) ×4,” Russ. Math. Surv. 60, No. 6, 1245–1246 (2005).

    Article  MATH  Google Scholar 

  8. 8.

    M. V. Shamolin, “Comparison of Jacobi integrable cases of plane and spatial motion of a body in a medium at streamlining,” J. Appl. Math. Mech. 69, No. 6, 900–906 (2005).

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    M. V. Shamolin, “A case of complete integrability in the dynamics on the tangent bundle of a two-dimensional sphere” Russian Math. Surv. 62, No. 5, 1009–1011 (2007).

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    M. V. Shamolin, “On integrability in transcendental functions,” Russ. Math. Surv. 53, No. 3, 637–638 (1998).

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. V. Shamolin.

Additional information

Translated from Problemy Matematicheskogo Analiza 90, January 2018, pp. 107-113.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shamolin, M.V. The Case of Integrable Systems with Dissipation on the Tangent Bundle of a Multidimensional Sphere. J Math Sci 228, 723–730 (2018). https://doi.org/10.1007/s10958-017-3649-0

Download citation