Advertisement

Journal of Mathematical Sciences

, Volume 227, Issue 6, pp 669–789 | Cite as

Continuous and Smooth Envelopes of Topological Algebras. Part 2

  • S. S. Akbarov
Article
  • 26 Downloads

Abstract

Since the first optical instruments were invented, the idea that the visible image of an object under observation depends on tools of observation became commonly assumed in physics. A way of formalizing this idea in mathematics is the construction that assigns to an arbitrary object A in a category K its envelope \( {\mathrm{Env}}_{\varPhi}^{\varOmega}\kern0.5em A \) in a given class of morphisms (a class of representations) Ω with respect to a given class of morphisms (a class of observation tools) Φ. It turns out that if we take a sufficiently wide category of topological algebras as K, then each choice of the classes Ω and Φ defines a “projection of functional analysis into geometry,” and the standard “geometric disciplines,” like complex geometry, differential geometry, and topology, become special cases of this construction. This gives a formal scheme of “categorical construction of geometries” with many interesting applications, in particular, “geometric generalizations of the Pontryagin duality” (to the classes of noncommutative groups). In this paper we describe this scheme in topology and in differential geometry.

Key words and phrases

stereotype space  stereotype algebra  envelope  Pontryagin duality 

AMS Subject Classification

46Hxx 54-xx  53-xx 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Adámek and J. Rosicky, Locally Presentable and Accessible Categories, Cambridge Univ. Press (1994).Google Scholar
  2. 2.
    S. S. Akbarov, “Pontryagin duality in the theory of topological vector spaces and in topological algebra,” J. Math. Sci., 113, No. 2, 179–349 (2003).CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    S. S. Akbarov, “Holomorphic functions of exponential type and duality for Stein groups with algebraic connected component of identity,” J. Math. Sci., 162, No. 4, 459–586 (2009); http://arxiv.org/abs/0806.3205.CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    S. S. Akbarov, “Envelopes and refinements in categories, with applications to functional analysis,” Diss. Math., 513, No. 1, 1–188, (2016); http://arxiv.org/abs/1110.2013.zbMATHMathSciNetGoogle Scholar
  5. 5.
    D. V. Alexeevski, A. M. Vinogradov, and V. V. Lychagin, Basic Ideas and Concepts of Differential Geometry, Springer-Verlag (1991).Google Scholar
  6. 6.
    O. Yu. Aristov, “Characterization of strict C*-algebras,” Stud. Math., 112, No. 1, 51–58 (1994).CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    O. Yu. Aristov, “On tensor products of strict C*-algebras,” Fundam. Prikl. Mat., 6, No. 4, 977–984 (2000).zbMATHMathSciNetGoogle Scholar
  8. 8.
    V. A. Artamonov, V. N. Salij, L. A. Skornjakov, L. N. Shevrin, and E. G. Shulgeifer, General Algebra [in Russian], Nauka, Moscow (1991).Google Scholar
  9. 9.
    A. Barut and R. Raczka, Theory of Group Representations and Applications, World Scientific (1986).Google Scholar
  10. 10.
    T. Becker, “A few remarks on the Dauns–Hofmann theorems for C*-algabras,” Arch. Math., 43, 265–269 (1984).CrossRefzbMATHGoogle Scholar
  11. 11.
    J. Bochnak, M. Coste, and M.-F. Roy, Real Algebraic Geometry, Springer-Verlag (1998).Google Scholar
  12. 12.
    F. Borceux, Handbook of Categorical Algebra. 1. Basic Category Theory, Cambridge Univ. Press (1994).Google Scholar
  13. 13.
    N. Bourbaki, Elements of Mathematics. Topological Vector Spaces, Springer-Verlag (2002).zbMATHGoogle Scholar
  14. 14.
    I. Bucur and A. Deleanu, Introduction to the Theory of Categories and Functors, Wiley (1968).Google Scholar
  15. 15.
    A. H. Clifford, “Representations induced in an invariant subgroup,” Ann. Math., 38, No. 3, 533–550 (1937).CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    C. Chevalley, Theory of Lie Groups, Princeton Univ. Press (1946).Google Scholar
  17. 17.
    A. Connes, Noncommutative Geometry, Academic Press, Boston, MA (1994).zbMATHGoogle Scholar
  18. 18.
    J. B. Cooper, Saks Spaces and Applications to Functional Analysis, North Holland Math. Stud. 139, Elsevier (1987).Google Scholar
  19. 19.
    J. Dauns and K. H. Hofmann, “Representations of rings by continuous sections,” Mem. Am. Math. Soc., 83 (1968).Google Scholar
  20. 20.
    J. Dixmier, Les C*-Algébres et Leurs Reprèsentations, Gauthier (1969).Google Scholar
  21. 21.
    M. J. Duprè and R. M. Gillette, Banach Bundles, Banach Modules, and Automorphisms of C*-Algebras, Res. Notes Math., 92, Boston (1983).Google Scholar
  22. 22.
    R. Engelking, General Topology, PWN, Warszawa (1977).zbMATHGoogle Scholar
  23. 23.
    M. Enock and J.-M. Schwartz, Kac Algebras and Duality of Locally Compact Groups, Springer-Verlag (1992).Google Scholar
  24. 24.
    P. Eymard, “L’algèbre de Fourier d’un groupe localement compact,” Bull. Soc. Math. Fr., 92, 181–236 (1964).CrossRefzbMATHGoogle Scholar
  25. 25.
    M. Fragoulopoulou, Topological Algebras with Involution, North-Holland (2005).Google Scholar
  26. 26.
    H. Freudenthal, “Einige Sätze über topologische Gruppen,” Ann. Math., 37, No. 2, 46–56 (1936).CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    H. Grauert and R. Remmert, Theory of Stein Spaces, Springer-Verlag (1977).Google Scholar
  28. 28.
    P. Griffiths and J. Harris, Principles of Algebraic Geometry, Vols. 1, 2, Wiley (1994).Google Scholar
  29. 29.
    S. Grosser and M. Moskowitz, “On central topological groups,” Trans. Am. Math. Soc., 127, No. 2, 317–340 (1967).CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    S. Grosser and M. Moskowitz, “Compactness conditions in topological groups,” J. Reine Angew. Math., 246, 1–40 (1971).zbMATHMathSciNetGoogle Scholar
  31. 31.
    E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. I, Springer-Verlag (1994).Google Scholar
  32. 32.
    E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. II, Springer-Verlag (1994).Google Scholar
  33. 33.
    A. Hulanicki, “Groups whose regular representation weakly contains all unitary representations,” Stud. Math., 24, 37–59 (1964).CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    J. E. Humphreys, Linear Algebraic Groups, Springer-Verlag (1975).Google Scholar
  35. 35.
    H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart (1981).CrossRefzbMATHGoogle Scholar
  36. 36.
    R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. I, Academic Press (1986).Google Scholar
  37. 37.
    R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. II, Academic Press (1986).Google Scholar
  38. 38.
    J. L. Kelley, Van NostrandGeneral Topology, (1957).Google Scholar
  39. 39.
    E. Kowalski, Representation Theory, ETH Zürich (2011).Google Scholar
  40. 40.
    A. Kriegl and P. W. Michor, The Convenient Setting of Global Analysis, Am. Math. Soc. (1997).Google Scholar
  41. 41.
    Yu. Kuznetsova, “A duality for Moore groups,” J. Oper. Theory, 69, No. 2, 101–130 (2013); http://arxiv.org/abs/0907.1409.zbMATHMathSciNetGoogle Scholar
  42. 42.
    J. G. Llavona, Approximation of Continuously Differentiable Functions, North Holland (1986).Google Scholar
  43. 43.
    D. Luminet and A. Valette, “Faithful uniformly continuous representations of Lie groups,” J. London Math. Soc., 49, No. 2, 100–108 (1994).CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    S. MacLane. Categories for the Working Mathematician, Springer-Verlag, Berlin (1971).Google Scholar
  45. 45.
    S. Majid, Foundations of Quantum Group Theory, Cambridge Univ. Press (1995).Google Scholar
  46. 46.
    P. W. Michor, Topics in Differential Geometry, Grad. Stud. Math., Vol. 93, Am. Math. Soc., Providence (2008).Google Scholar
  47. 47.
    G. J. Murphy, C*-Algebras and Operator Theory, Academic Press (1990).Google Scholar
  48. 48.
    L. Nachbin, “Sur les algèbres denses de fonctions diffèrentiables sur une variété,” C. R. Acad. Sci. Paris, 228, 1549–1551 (1949).zbMATHMathSciNetGoogle Scholar
  49. 49.
    T. W. Palmer, Banach Algebras and the General Theory of *-Algebras, Vol. II, Academic Press (2001).Google Scholar
  50. 50.
    A. L. T. Paterson, Amenability, Math. Surv. Monogr., 29 (1988).Google Scholar
  51. 51.
    I. G. Petrovsky, Lectures on the Theory of Ordinary Differential Equations [in Russian], Nauka, Moscow (1964).Google Scholar
  52. 52.
    A. Yu. Pirkovskii, “Arens–Michael envelopes, homological epimorphisms, and relatively quasi-free algebras,” Tr Mosk. Mat. Obshch., 69, 34–123 (2008).zbMATHMathSciNetGoogle Scholar
  53. 53.
    A. Pietsch, Nuclear Locally Convex Spaces, Springer-Verlag (1972).Google Scholar
  54. 54.
    M. M. Postnikov, Lie Groups and Lie Algebras, Mir, Moscow (1986).Google Scholar
  55. 55.
    J. Renault, “Fourier-algebra (2),” in: Encycl. Math. (M. Hazewinkel, ed.), Springer-Verlag (2001).Google Scholar
  56. 56.
    H. Rossi, “On envelops of holomorphy,” Commun. Pure Appl. Math., 16, 9–17 (1963).CrossRefzbMATHGoogle Scholar
  57. 57.
    Z. Sebestyén, “Every C*-seminorm is automatically submultiplicative,” Period. Math. Hung., 10, 1–8 (1979).CrossRefzbMATHMathSciNetGoogle Scholar
  58. 58.
    I. M. Singer, “Uniformly continuous representations of Lie groups,” Ann. Math. (2), 56, 242–247 (1952).Google Scholar
  59. 59.
    H. H. Shaeffer, Topological Vector Spaces, Macmillan (1966).Google Scholar
  60. 60.
    R. W. Sharpe, Differential Geometry. Cartan’s Generalization of Klein’s Erlangen Program, Springer-Verlag (1997).Google Scholar
  61. 61.
    A. I. Shtern, “Norm continuous representations of locally compact groups,” Russ. J. Math. Phys., 15, No. 4, 552–553 (2008).CrossRefzbMATHMathSciNetGoogle Scholar
  62. 62.
    J. L. Taylor, Several Complex Variables with Connections to Algebraic Geometry and Lie Groups, Grad. Stud. Math., 46, Am. Math. Soc., Providence, Rhode Island (2002).Google Scholar
  63. 63.
    J. L. Taylor, “Homology and cohomology for topological algebras,” Adv. Math., 9, 137–182 (1972).Google Scholar
  64. 64.
    M. S. Tsalenko and E. G. Shulgeifer, Foundations of Category Theory [in Russian], Nauka (1974).Google Scholar
  65. 65.
    A. L. Onishchik and E. B. Vinberg, Lie Groups and Algebraic Groups, Springer-Verlag (1990).Google Scholar
  66. 66.
    D. Zhelobenko, Principal Structures and Methods of Representation Theory, Am. Math. Soc. (2006).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Russian Institute for Scientific and Technical Information of the Russian Academy of SciencesMoscowRussia

Personalised recommendations