Skip to main content
Log in

An operator approach to the indefinite Stieltjes moment problem

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

A function f meromorphic on ℂ\ℝ is said to be in the generalized Nevanlinna class N κ (κ ϵ ℤ+), if f is symmetric with respect to ℝ and the kernel \( {\mathbf{N}}_{\omega }(z)\coloneq \frac{f(z)-\overline{f\left(\omega \right)}}{z-\overline{\omega}} \) has κ negative squares on ℂ+. The generalized Stieltjes class \( {\mathbf{N}}_{\kappa}^k\left(\kappa, k\in {\mathrm{\mathbb{Z}}}_{+}\right) \) is defined as the set of functions f ϵ N κ such that z f ϵ N k . The full indefinite Stieltjes moment problem \( {MP}_{\kappa}^k\left(\mathbf{s}\right) \) consists in the following: Given κ, k ϵ ℤ+, and a sequence \( \mathbf{s}={\left\{{s}_i\right\}}_{i=0}^{\infty } \) of real numbers, to describe the set of functions \( f\in {\mathbf{N}}_{\kappa}^k \), which satisfy the asymptotic expansion

$$ f(z)=-\frac{s_0}{z}-\cdots -\frac{s_2n}{z^{2n+1}}+o\left(\frac{1}{z^{2n+1}}\right)\kern1em \left(z=-y\in {\mathrm{\mathbb{R}}}_{-},y\uparrow \infty \right) $$

for all n big enough. In the present paper, we will solve the indefinite Stieltjes moment problem \( {MP}_{\kappa}^k\left(\mathbf{s}\right) \) within the M. G. Krein theory of u-resolvent matrices applied to a Pontryagin space symmetric operator A [0;N] generated by \( {\mathfrak{J}}_{\left[0;N\right]} \). The u-resolvent matrices of the operator A [0;N] are calculated in terms of generalized Stieltjes polynomials, by using the boundary triple’s technique. Some criteria for the problem \( {MP}_{\kappa}^k\left(\mathbf{s}\right) \) to be solvable and indeterminate are found. Explicit formulae for Padé approximants for the generalized Stieltjes fraction in terms of generalized Stieltjes polynomials are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. I. Akhiezer, The Classical Moment Problem, Oliver and Boyd, Edinburgh, 1965.

    MATH  Google Scholar 

  2. D. Alpay, A. Dijksma, and H. Langer, “Factorization of J-unitary matrix polynomials on the line and a Schur algorithm for generalized Nevanlinna functions,” Linear Algebra Appl., 387, 313–342 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Alpay and H. Dym, “On applications of reproducing kernel spaces to the Schur algorithm and rational J unitary factorization. I. Schur methods in operator theory and signal processing,” in: Oper. Theory Adv. Appl., Birkhäuser, Basel, 1986, 18, pp. 89–159.

  4. R. Arens, “Operational calculus of linear relations,” Pacific J. Math., 11, 9–23 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Z. Arov and H. Dym, Bitangential Direct and Inverse Problems for Systems of Integral and Differential Equations, Cambridge Univ. Press, Cambridge, 2012.

    Book  MATH  Google Scholar 

  6. T. Ya. Azizov and I. S. Iokhvidov, Linear Operators in Spaces with Indefinite Metric, Wiley, New York, 1989.

    MATH  Google Scholar 

  7. J. W. Calkin, “Abstract symmetric boundary conditions,” TAMS, 45, No. 3, 369–442 (1939).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Derevyagin, “On the Schur algorithm for indefinite moment problem,” Methods Funct. Anal. Topol., 9(2), 133–145 (2003).

    MathSciNet  MATH  Google Scholar 

  9. M. Derevyagin and V.Derkach, “Spectral problems for generalized Jacobi matrices,” Linear Algebra Appl., 382, 1–24 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Derevyagin and V.Derkach, “On the convergence of Padé approximations for generalized Nevanlinna function,” Trans. Moscow Math. Soc., 68, 119–162 (2007).

    Article  MATH  Google Scholar 

  11. V. Derkach, “Generalized resolvents of a class of Hermitian operators in a Krein space,” Dokl. Akad. Nauk SSSR, 317, 807–812 (1991).

    MathSciNet  MATH  Google Scholar 

  12. V. Derkach, “On Weyl function and generalized resolvents of a Hermitian operator in a Krein space,” Integr. Eq. Operator Theory, 23, 387–415 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  13. V. Derkach, “On indefinite moment problem and resolvent matrices of Hermitian operators in Krein spaces,” Math.Nachr., 184, 135–166 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  14. V. Derkach, “On Krein space symmetric linear relations with gaps,” Methods Funct. Anal. Topol., 4(2), 16–40 (1998).

    MathSciNet  MATH  Google Scholar 

  15. V. Derkach, “On generalized resolvents of Hermitian relations in Krein spaces,” J. Math. Sci., 97(5), 4420–4460 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  16. V. Derkach, S. Hassi, and H. S. V. de Snoo, “Truncated moment problems in the class of generalized Nevanlinna functions,” Math. Nachr., 285 (14-15), 1741–1769 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  17. V. Derkach and I. Kovalyov, “On a class of generalized Stieltjes continued fractions,” Methods of Funct. Anal. Topol., 21(4), 315–335 (2015).

    MathSciNet  MATH  Google Scholar 

  18. V. Derkach and I. Kovalyov, “The Schur algorithm for indefinite Stieltjes moment problem,” Math. Nachr., (2017); DOI: https://doi.org/10.1002/mana.201600189.

  19. V. Derkach and M. Malamud, “On Weyl function and Hermitian operators with gaps,” Dokl. Akad. Nauk SSSR, 293(5), 1041–1046 (1987).

    MathSciNet  MATH  Google Scholar 

  20. V. A. Derkach and M. M. Malamud, “Generalized resolvents and the boundary value problems for Hermitian operators with gaps,” J. Funct. Anal., 95, 1–95 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  21. V. Derkach and M. Malamud, “The extension theory of Hermitian operators and the moment problem,” J. of Math. Sci., 73(2), 141–242 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  22. V. Derkach and M. Malamud, “On some classes of holomorphic operator functions with nonnegative imaginary part,” 16th OT Conference Proceedings, Operator theory, Operator Algebras and Related Topics, Theta Found. Bucharest, Timisoara, 1997, pp. 113–147.

  23. H. Dym, “On Hermitian block Hankel matrices, matrix polynomials, the Hamburger moment problem, interpolation and maximum entropy,” Integr. Equa. Oper. Theory, 12(6), 757–812 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  24. Yu. M. Dyukarevm and V. E. Katsnel’son, “Multiplicative and additive Stieltjes classes of analytic matrix-valued functions and interpolation problems connected with them. I.,” Teor. Funkts. Funkts. Anal. Pril., 126(36), 13–27 (1981).

  25. G. Frobenius, “Über das Trägheitsgesetz der quadratischen Formen,” J. Reine Angew. Math., 114, 187–230 (1895).

    MathSciNet  MATH  Google Scholar 

  26. P. A. Fuhrmann, A Polynomial Approach to Linear Algebra, Springer, New York, 2012.

    Book  MATH  Google Scholar 

  27. F. R. Gantmacher, The Theory of Matrices, Chelsey, New York, 1964.

    MATH  Google Scholar 

  28. F. R. Gantmacher and M. G. Krein, Oscillation Matrices and Kernels and Small Oscillations of Mechanical Systems, Akademie, Berlin, 1960.

    MATH  Google Scholar 

  29. I. Gohberg, P. Lankaster, and L. Rodman, Matrix Polynomials, Academic Press, New York, 1982.

    Google Scholar 

  30. V. I. Gorbachuk and M. L. Gorbachuk, Boundary Problems for Differential Operator Equations [in Russian], Naukova Dumka, Kiev, 1984.

  31. I. S. Kac and M. G. Krein, “R-functions – analytic functions mapping the upper half-plane into itself,” AMS Transl. Ser. 2, 103, 1–18 (1974).

  32. A. N. Kochubei, “On extensions of symmetric operators and symmetric binary relations,” Mat. Zametki, 17, No. 1, 41–48 (1975).

    MathSciNet  Google Scholar 

  33. M. G. Krein, “On resolvents of Hermitian operator with deficiency index (m,m),” Dokl. Akad. Nauk SSSR, 52, 657–660 (1946).

    MathSciNet  MATH  Google Scholar 

  34. M. G. Krein, “The fundamental propositions of the theory of representations of Hermitian operators with deficiency index (m,m),” Ukr. Mat. Zh., 1(2), 3–66 (1949).

    MathSciNet  Google Scholar 

  35. M. G. Krein, “Description of solutions of the truncated moment problem,” Mat. Issled., 2, 114–132 (1967).

    MathSciNet  Google Scholar 

  36. M. G. Krein and H. Langer, “Über die Q-function eines π-Hermiteschen Operators im Raume Π κ ,” Acta. Sci. Math. (Szeged), 34, 191–230 (1973).

    MathSciNet  MATH  Google Scholar 

  37. M. G. Krein and H. Langer, “Über einige Fortsetzungsprobleme, die eng mit der Theorie Hermitscher Operatoren in Raume Π κ zusammenhängen, I. Einige Fuktionenklassen und ihre Dahrstellungen,” Math. Nachr., 77, 187–236 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  38. M. G. Krein and H. Langer, “Über einige Fortsetzungsprobleme, die eng mit der Theorie Hermitscher Operatoren in Raume Π κ zusammenhängen, II.,” J. of Funct. Anal., 30, 390–447 (1978).

  39. M. G. Krein and H. Langer, “On some extension problem which are closely connected with the theory of Hermitian operators in a space Π κ III. Indefinite analogues of the Hamburger and Stieltjes moment problems, Part I,” Beiträge zur Anal., 14, 25–40 (1979).

    MathSciNet  Google Scholar 

  40. M. G. Krein and H. Langer, “On some extension problem which are closely connected with the theory of Hermitian operators in a space Π κ III. Indefinite analogues of the Hamburger and Stieltjes moment problems, Part II,” Beiträge zur Anal., 15, 27–45 (1981).

    MathSciNet  Google Scholar 

  41. M. G. Krein and A. A. Nudelman, The Markov Moment Problem and Extremal Problems, AMS, Providence, RI, 1977.

    Google Scholar 

  42. L. Kronecker, “Zur Theorie der Elimination einer variabeln aus zwei algebraischen Gleichungen,” Monatsberichte, 535–600 (1881).

  43. P. Lancaster, Theory of Matrices, Academic Press, New York, 1969.

    MATH  Google Scholar 

  44. M. S. Livsič, “On a certain class of linear operators in Hilbert space,” Mat. Sbornik, 19(61):2, 239–262 (1946).

  45. A. Magnus, “Expansion of power series into P-fractions,” Math. Zeitschr., 80, 209–216 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  46. M. M. Malamud, “On the formula of generalized resolvents of a nondensely defined Hermitian operator,” Ukr. Mat. Zh., 44(2), 1658–1688 (1992).

    Article  MATH  Google Scholar 

  47. V. P. Potapov, “Multiplicative structure of J-nonexpanding matrix functions,” Trudy Mosk. Matem. Obshch., 4, 125–236 (1955).

    Google Scholar 

  48. T. Stieltjes, “Recherches sur les fractions continues,” Ann. de Toulouse, 8, 1–122 (1894).

    Article  MathSciNet  MATH  Google Scholar 

  49. E. R. Tsekanovskii and Ju. L. Šmul’jan, “The theory of biextensions of operators in rigged Hilbert spaces. Unbounded operator colligations and characteristic functions,” Uspekhi Mat. Nauk, 32, No. 5(197), 69–124 (1977).

  50. H. S. Wall, Analytic Theory of Continued Fractions, Chelsey, New York, 1967.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Derkach.

Additional information

Dedicated to E.R. Tsekanovskii on the occasion of his 80th birthday

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 14, No. 1, pp. 42–85, January–March, 2017.

This work was supported by a grant of the Volkswagen Foundation and by the Ministry of Education and Science of Ukraine (project numbers 0115U000556, 0115U000136).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derkach, V., Kovalyov, I. An operator approach to the indefinite Stieltjes moment problem. J Math Sci 227, 33–67 (2017). https://doi.org/10.1007/s10958-017-3573-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-017-3573-3

Keywords

Navigation