Skip to main content
Log in

Analysis of the Methods of Determination of the Viscoelastic Coefficients of Piezoceramic Resonators

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We analyze the well-known and new methods for the experimental determination of the viscoelastic coefficients of piezoceramic resonators including the coefficients of coupling and the tangents of mechanical and piezoelectric losses. The foundations of author’s new computation-experimental technique are outlined and the examples of its application are presented. The method is justified by using, as an example, the well-known problem of radial vibrations of a thin disk with continuous electrodes. The idea of alternating measurements of voltage drops in a modernized Mason circuit is developed. On its basis, we develop a new method for the determination of phase shifts between the components of admittance by the cosine theorem and present some elements of this technique. The experimental data are in good agreement with the numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Akopyan, A. N. Solov’ev, and S. N. Shevtsov, Methods and Algorithm of Determination of the Complete Collection of Compatible Material Constants of Piezoceramic Materials [in Russian], YuFU, Rostov-on-Don (2008).

    Google Scholar 

  2. V. A. Andrushchenko, A. A. Bondarenko, V. V. Meleshko, and V. N. Nikitenko, “Determination of elastic constants for square piezoceramic plates by the resonance method,” Akust. Visn., 9, No. 4, 3–11 (2006).

    Google Scholar 

  3. D. Berlincourt, D. R. Curran, and H. Jaffe, “Piezoelectric and piezomagnetic materials and their function in transducers,” in: W. P. Mason (Ed.), Physical Acoustics. Principles and Methods, Vol. 1, Part A, Academic Press, New York (1964), pp. 204-236.

  4. A. M. Bolkisev, V. L. Karlash, and N. A. Shul’ga, “Temperature dependence of the properties of piezoelectric ceramics,” Prikl. Mekh., 20, No. 7, 70–74 (1984).

    Google Scholar 

  5. A. A. Bondarenko, N. I. Karas’, and A. F. Ulitko, “Methods for the determination of characteristics of dissipation in the process of vibration of piezoceramic structural elements,” Prikl. Mekh., 18, No. 2, 104–108 (1982).

  6. I. A. Glozman, Piezoceramic [in Russian], Ènergiya, Moscow (1972).

    Google Scholar 

  7. GOST 12370-72. Piezoceramic Materials. Testing Methods [in Russian], Izd. Standartov, Moscow (1973).

  8. V. T. Grinchenko, A. F. Ulitko, and N. A. Shul’ga, Electroelasticity, in: A. N. Guz’ (editor), Mechanics of Coupled Fields in Structural Elements, Vol. 5 [in Russian], Naukova Dumka, Kiev (1989).

  9. I. P. Zherebtsov, Radioengineering [in Russian], Svyaz’, Moscow (1965).

    Google Scholar 

  10. A. M. Kalashnikov and Ya. V. Stepuk, Foundations of Radioengineering and Radiolocation: Electrovacuum Devices and Impulsive Technique [in Russian], Voenizdat, Moscow (1962).

  11. V. L. Karlash, “Effect of energy dissipation on the amplitude-frequency response of the admittance of a thin piezoceramic disc,” Èlectrichestvo, No. 4, 59–61 (1984).

  12. V. L. Karlash, “Dissipation of energy in the course of vibration of thin circular piezoceramic plates,” Prikl. Mekh., 20, No. 5, 77–82 (1984).

    MATH  Google Scholar 

  13. V. L. Karlash, “The problem of electromechanical losses in piezoelectric bodies,” Prikl. Mekh., 24, No. 3, 58–63 (1988).

    Google Scholar 

  14. V. L. Karlash, “Resonant electromechanical vibration of piezoelectric plates,” Prikl. Mekh., 41, No. 7, 3–46 (2005).

    MATH  Google Scholar 

  15. V. L. Karlash, “Specific features of the amplitude-frequency characteristics of admittance for a thin piezoceramic semidisk,” Prikl. Mekh., 45, No. 10, 106–114 (2009).

    Google Scholar 

  16. V. L. Karlash, “Electromechanical vibration of a piezoceramic hollow spheroid with polar notch,” Prikl. Mekh., 46, No. 5, 58–65 (2010).

    Google Scholar 

  17. H. W. Katz (editor), Solid State Magnetic and Dielectric Devices, Wiley, New York (1959).

    Google Scholar 

  18. O. P. Petin, Yu. A. Kramarov, and G. P. Petin, “Installation for measuring the admittance-frequency characteristics of piezotransducers,” in: Piezoelectric Materials and Transducers [in Russian], Rostov State Univ., Rostov-on-Don (1977), pp. 22–25.

  19. R. M. Tereshchuk, R. M. Dombrugov, N. D. Bosyi, S. I. Nogin, V. P. Borovskii, and A. B. Chaplinskii, A Handbook for Radioamateurs [in Russian], Tekhnika, Kiev (1965).

    Google Scholar 

  20. V. M. Sharapov, I. G. Minaev. Yu. Yu. Bondarenko. T. Yu. Kisil’, M. P. Musienko, S. V. Rotté, and I. B. Chudaeva, in: V. M. Sharapov (editor), Piezoelectric Transducers. A Handbook [in Russian], Cherkassy State Tekh. Univ., Cherkassy (2004).

  21. M. O. Shul’ga and V. L. Karlash, “Measurements of the admittance of piezoceramic elements in the Mason quadrupole circuit and its versions,” Abstracts of the IV Internat. Sci.-Eng. Conf. “Transducers, Devices, and Systems-2008,” Cherkasy–Gurzuf, 2008, pp. 54–56.

  22. M. O. Shul’ga and V. L. Karlash, Resonance Electromechanical Vibrations of Piezoelectric Plates [in Ukrainian], Naukova Dumka, Kiev (2008).

    Google Scholar 

  23. M. Shul’ga and V. Karlash, “Efficiency of the electromechanical transformation of energy in the course of the resonance vibrations of structural elements made of piezoceramics,” Fiz.-Mat. Model. Inform. Tekhnol., Issue 3, 225–237 (2006).

  24. N. A. Shul’ga and A. M. Bolkisev, Vibrations of Piezoelectric Bodies [in Russian], Naukova Dumka, Kiev (1990).

    MATH  Google Scholar 

  25. B. Jaffe, W. R. Cook, Jr., and H. Jaffe, Piezoelectric Ceramics, Academic Press, London (1971).

    Google Scholar 

  26. J. E. Garcia, J. D. S. Guerra, E. B. Araújo, and R. Pérez, “Domain wall contribution to dielectric and piezoelectric responses in 0.65Pb(Mg1/3Nb2/3)–0.35PbTiO3 ferroelectric ceramics,” J. Phys. D : Appl. Phys., 42, No. 11, 115421–115425 (2009).

  27. L. O. Grigor’eva, “Electromechanical nonstationary thickness vibrations of piezoceramic layer,” Int. Appl. Mech., 46, No. 2, 159–164 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  28. J. D. S. Guerra, E. B, Araújo, C. A. Guarany, R. N. Reis, and E. C. Lima, “Features of dielectric response in PMN–PT ferroelectric ceramics,” J. Phys. D : Appl. Phys., 41, No. 22, 225504–225508 (2008).

  29. D. W. Dye, “The piezoelectric quartz resonator and its equivalent circuit,” Proc. Phys. Soc. London, 38, 399–458 (1925).

    Article  Google Scholar 

  30. K. S. Van Dyke, “The electric network equivalent of piezoelectric resonator,” Phys. Rev., 25, 895(A) (1925).

  31. R. Holland, “Representation of dielectric, elastic, and piezoelectric losses by complex coefficients,” IEEE Trans. Sonics Ultrason., SU-14, No. 1, 18–20 (1967).

  32. R. Holland and E. P. EerNisse, Design of Resonant Piezoelectric Devices, M.I.T. Press, Cambridge (1969).

    Google Scholar 

  33. “IRE standards on piezoelectric crystals: measurements of piezoelectric ceramics. 1961,” Proc. IRE, 49, No. 7, 1161–1169 (1961).

  34. V. L. Karlash, “Electroelastic vibrations and transformation ratio of a planar piezoceramic transformer,” J. Sound Vibrat., 277, Nos. 1–2, 353–367 (2004).

  35. V. Karlash, “Longitudinal and lateral vibrations of a planar piezoceramic transformer,” Jap. J. Appl. Phys., 44, Part 1, No. 4A, 1852–1856 (2005).

  36. V. L. Karlash, “Planar electroelastic vibrations of piezoceramic rectangular plate and half disk,” Int. Appl. Mech., 43, No. 5, 547–553 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  37. I. F. Kirichok and T. V. Karnaukhova, “Forced axisymmetric vibrations and self-heating of thermoviscoelastic cylindrical shells with piezoelectric actuators,” Int. Appl. Mech., 46, No. 10, 1132–1139 (2011).

    MATH  Google Scholar 

  38. D. Kobor, A. Hajjaji, J. E. Garcia, R. Perez, A. Albareda, L. Lebrun, and D. Guyomar, “Dielectric and mechanical nonlinear behavior of Mn doped PMN-35PT ceramics,” J. Mod. Phys., 1, No. 4, 211–216 (2010).

    Article  Google Scholar 

  39. G. E. Martin, “Dielectric, elastic and piezoelectric losses in piezoelectric materials,” in: Proc. of the 1974 Ultrasonic Symposium, IEEE Press, Piscataway, NJ (1974), pp. 613–617.

  40. W. P. Mason, “The location of hysteresis phenomena in Rochelle salt,” Phys. Rev., 58, No. 8, 744–756 (1940).

    Article  Google Scholar 

  41. A. V. Mezheritsky, “Elastic, dielectric and piezoelectric losses in piezoceramics: how it works all together,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 51, No. 6, 695–707 (2004).

    Google Scholar 

  42. E. C. Munk, “The equivalent electrical circuit for radial modes of a piezoelectric ceramic disk with concentric electrodes,” Phillips Res. Rep., 20, No. 2, 170–189 (1965).

    Google Scholar 

  43. K. Uchino, J. H. Zheng, Y. H. Chen, X. H. Du, J. Ryu, Y. Gao, S. Ural, S. Priya, and S. Hirose, “Loss mechanisms and high power piezoelectrics,” J. Mater. Sci., 41, No. 1, 217–228 (2006).

    Article  Google Scholar 

  44. S. O. Ural, S. Tuncdemir, Y. Zhuang, and K. Uchino, “Development of a high power piezoelectric characterization system and its application for resonance/antiresonance mode characterization,” Jap. J. Appl. Phys., 48, No. 5R, 056509–056514 (2009).

    Article  Google Scholar 

  45. N. A. Shul’ga, A. I. Bezverkhii, and O. I. Mekievskii, “Resonant frequencies of electroelastic vibrations of piezoceramic plates,” Int. Appl. Mech., 46, No. 9, 1031–1038 (2010).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 58, No. 3, pp. 97–111, July–September, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karlash, V.L. Analysis of the Methods of Determination of the Viscoelastic Coefficients of Piezoceramic Resonators. J Math Sci 226, 123–138 (2017). https://doi.org/10.1007/s10958-017-3524-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-017-3524-z

Navigation