Skip to main content
Log in

Nonlinear Normal Modes of Strongly Nonlinear Periodically Excited Piecewise Linear Systems

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

A method for the numerical analysis of nonlinear normal modes of forced vibrations in strongly nonlinear systems with piecewise linear elastic characteristics is proposed. The approach is based on the combination of the Shaw–Pierre method of nonlinear normal modes with the Rauscher technique. As a result of application of this approach, the nonautonomous piecewise linear system is transformed into an autonomous system. For this system, we determine the Shaw–Pierre nonlinear normal modes. We also study the nonlinear torsional vibrations of the power transmission in a three-cylinder transport engine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. V. Avramov and Yu. V. Mikhlin, Nonlinear Dynamics of Elastic Systems. Vol. 1: Models, Methods, and Phenomena [in Russian], Regul. Khaot. Dinam., Moscow–Izhevsk (2010).

  2. A. C. J. Luo, “The mapping dynamics of periodic motions for a three-piecewise linear system under a periodic excitation,” J. Sound Vibrat., 283, Nos. 3-5, 723–748 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  3. K. V. Avramov, “Analysis of forced vibrations by nonlinear modes,” Nonlin. Dynam., 53, Nos. 1-2, 117–127 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  4. K. V. Avramov, “Bifurcation analysis of a vibropercussion system by the method of amplitude surfaces,” Prikl. Mekh., 38, No. 9, 138–144 (2002); English translation : Int. Appl. Mech., 38, No. 9, 1151–1156 (2002).

  5. K. V. Avramov, “Nonlinear modes of parametric vibrations and their applications to beams dynamics,” J. Sound Vibrat., 322, 476–489 (2009).

    Article  Google Scholar 

  6. K. V. Avramov, A. S. Belomyttsev, and V. N. Karaban, “Regions of chaotic oscillations of discrete mechanical systems with piecewise-linear elastic characteristics,” Prikl. Mekh., 30, No. 5, 81–88 (1994); English translation : Int. Appl. Mech., 30, No. 5, 396–402 (1994).

  7. K. V. Avramov and V. N. Karaban, “Resonance under random vibrations of discrete dynamic systems with piecewise-linear elastic characteristics,” Prikl. Mekh., 33, No. 7, 84–88 (1997); English translation : Int. Appl. Mech., 33, No. 7, 584–588 (1997).

  8. K. V. Avramov and Yu. V. Mikhlin, “Review of applications of nonlinear normal modes for vibrating mechanical systems,” Appl. Mech. Rev., 65, No. 2, 020801-020801-20 (2013), doi:https://doi.org/10.1115/1.4023533.

  9. C. J. Begley and L. N. Virgin, “A comparison of piecewise linear and continuous approximating models,” Mech. Res. Comm., 22, No. 6, 527–532 (1995).

    Article  MATH  Google Scholar 

  10. M. Chati, R. Rand, and S. Mukherjee, “Modal analysis of a cracked beam,” J. Sound Vibrat., 207, No. 2, 249–270 (1997).

    Article  MATH  Google Scholar 

  11. Sh.-L. Chen and S. W. Shaw, “Normal modes for piecewise linear vibratory systems,” Nonlin. Dynam., 10, No. 2, 135–164 (1996).

    Article  MathSciNet  Google Scholar 

  12. J. C. Ji, “Dynamics of a piecewise linear system subjected to a saturation constraint,” J. Sound Vibrat., 271, Nos. 3-5, 905–920 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Jiang, C. Pierre, and S. W. Shaw, “Large-amplitude nonlinear normal modes of piecewise linear systems,” J. Sound Vibrat., 272, Nos. 3-5, 869–891 (2004).

    Article  Google Scholar 

  14. D. Jiang, C. Pierre, and S. W. Shaw, “Nonlinear normal modes for vibratory systems under harmonic excitation,” J. Sound Vibrat., 288, Nos. 4-5, 791–812 (2005).

    Article  Google Scholar 

  15. T. C. Kim, T. E. Rook, and R. Singh, “Super- and sub-harmonic response calculations for a torsional system with clearance nonlinearity using the harmonic balance method,” J. Sound Vibrat., 281, Nos. 3-5, 965–993 (2005).

    Article  Google Scholar 

  16. Yu. Mikhlin and K. V. Avramov, “Nonlinear normal modes for vibrating mechanical systems. Review of theoretical developments,” Appl. Mech. Rev., 63, No. 6, 060802-060802-21 (2010), doi:https://doi.org/10.1115/1.4003825.

  17. E. Pesheck, C. Pierre, and S. W. Shaw, “A new Galerkin-based approach for accurate nonlinear normal modes through invariant manifolds,” J. Sound Vibrat., 249, No. 5, 971–993 (2002).

    Article  MATH  Google Scholar 

  18. M. D. Todd and L. N. Virgin, “Natural frequency considerations of an impact oscillator,” J. Sound Vibrat., 194, No. 3, 452–460 (1996).

    Article  Google Scholar 

  19. A. F. Vakakis, L. I. Manevitch, Yu. V. Mikhlin, V. N. Pilipchuk, and A. A. Zevin, Normal Modes and Localization in Nonlinear Systems, Wiley, New York (1996).

    Book  MATH  Google Scholar 

  20. F. Vestroni, A. Luongo, and A. Paolone, “A perturbation method for evaluating nonlinear normal modes of a piecewise linear twodegrees-of-freedom system,” Nonlin. Dynam., 54, No. 4, 379–393 (2008).

    Article  MATH  Google Scholar 

  21. H. Wolf, J. Kodvanj, and S. Bjelovučić-Kopilović, “Effect of smoothing piecewise-linear oscillators on their stability predictions,” J. Sound Vibrat., 270, Nos. 4-5, 917–932 (2004).

    Article  Google Scholar 

  22. F. Zhu and R. G. Parker, “Nonlinear dynamics of a one-way clutch in belt-pulley systems,” J. Sound Vibrat., 279, Nos. 1-2, 285–308 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 58, No. 3, pp. 83–90, July–September, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uspensky, B.V., Avramov, K.V. Nonlinear Normal Modes of Strongly Nonlinear Periodically Excited Piecewise Linear Systems. J Math Sci 226, 104–113 (2017). https://doi.org/10.1007/s10958-017-3522-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-017-3522-1

Navigation