Skip to main content
Log in

On Consistent Hypothesis Testing

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We study natural links between various types of consistency: usual consistency, strong consistency, uniform consistency, and pointwise consistency. On the base of these results, we provide both sufficient conditions and necessary conditions for the existence of various types of consistent tests for a wide spectrum of problems of hypothesis testing which arise in statistics: on a probability measure of an independent sample, on a mean measure of a Poisson process, on a solution of an ill-posed linear problem in a Gaussian noise, on a solution of the deconvolution problem, for signal detection in a Gaussian white noise. In the last three cases, the necessary and sufficient conditions coincide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Arcones, “The large deviation principle for stochastic processes. II,” Teor. Veroyatn. Primen., 48, 19–44 (2004).

    MathSciNet  MATH  Google Scholar 

  2. R. G. Bahadur and R. G. Savage, “The nonexistence of certain statistical procedures in nonparametric problems,” Ann. Math. Statist., 27, 1115–1122 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Balakrishnan, M. S. Nikulin, and V. Voinov, Chi-squared Goodness of Fit Tests With Applications, Elsevier, Oxford (2013).

    MATH  Google Scholar 

  4. A. R. Barron, “Uniformly powerful goodness of fit tests,” Ann. Statist., 17, 107–124 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Berger, “On uniformly consistent tests,” Ann. Math. Statist., 18, 289–293 (1989).

    MathSciNet  MATH  Google Scholar 

  6. V. I. Bogachev, Gaussian Measures [in Russian], Moscow (1997).

  7. V. I. Bogachev, Measure Theory, Springer, New York (2000).

    Google Scholar 

  8. M. V. Burnashev, “On the minimax solution of inaccurately known signal in a white Gaussian noise. Background,” Teor. Veroyatn. Primen., 24, 107-119 (1979).

    MATH  Google Scholar 

  9. L. Comminges and A. S. Dalalyan, “Minimax testing of a composite null hypothesis defined via a quadratic functional in the model of regression,” Electronic Journal of Statistics, 7, 146–190 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  10. T. M. Cover, “On determining irrationality of the mean of a random variable,” Ann. Statist., 1, 862–871 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Dembo and Y. Peres, “A topological criterion for hypothesis testing,” Ann. Statist., 22, 106–117 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Jones and Bartlett, Boston (1993).

    MATH  Google Scholar 

  13. L. Devroye and G. Lugosi, “Almost sure classification of densities,” J. Nonpar. Statist., 14, 675–698 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  14. L. L. Donoho, “One-sided inference about functionals of a density,” Ann. Statist., 16, 1390–1420 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  15. N. Dunford and J. T. Schwartz, Linear Operators. Part I, Interscience Publishers, New York (1958).

  16. M. S. Ermakov, “Large deviations of empirical measures and statistical tests,” Zap. Nauchn. Semin. POMI, 207, 37–59 (1993).

    MATH  Google Scholar 

  17. M. S. Ermakov, “On distinguishability of two nonparametric sets of hypotheses,” Statist. Probab. Letters., 48, 275–282 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  18. M. S. Ermakov, “Nonparametric signal detection with small type I and type II error probabilities,” Statistical Inference for Stochastic Processes, 14, 1–19 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Ganssler, “Compactness and sequential compactness on the space of measures,” Z.Wahrsch.Verw. Gebiete, 17, 124–146 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Groeneboom, J. Oosterhoff, and F. H. Ruymgaart, “Large deviation theorems for empirical probability measures,” Ann. Probab., 7, 553–586 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  21. W. Hoeffding and J. Wolfowitz, “Distinguishability of sets of distributions,” Ann. Math. Stat., 29, 700–718 (1958).

    Article  MATH  Google Scholar 

  22. J. L. Horowitz and V. S. Spokoiny, “An adaptive, rate optimal test of a parametric model against a nonparametric alternative,” Econometrica, 69, 599–631 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  23. I. A. Ibragimov and R. Z. Khasminskii, “On the estimation of infinitely dimensional parameter in Gaussian white noise,” Dokl. Akad. Nauk USSR, 236, 1053–1055 (1977).

    Google Scholar 

  24. Yu. I. Ingster, “Asymptotically minimax hypothesis testing for nonparametric alternatives. I, II, III,” Mathematical Methods of Statistics, 2, 85–114, 171–189, 249–268 (1993).

  25. Yu. I. Ingster and Yu. A. Kutoyants, “Nonparametric hypothesis testing for intensity of the Poisson process,” Mathematical Methods of Statistics, 16, 218–246 (2007).

    MathSciNet  MATH  Google Scholar 

  26. Yu. I. Ingster and I. A. Suslina, “Nonparametric goodness-of-fit testing under Gaussian models,” Lect. Notes Statist., 169, Springer (2002).

  27. A. Janssen, “Global power function of goodness of fit tests,” Ann. Statist., 28, 239–253 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  28. C. Kraft, “Some conditions for consistency and uniform consistency of statistical procedures,” Univ. Californ. Publ. Stat., 2, 125–142 (1955).

    MathSciNet  MATH  Google Scholar 

  29. S. R. Kulkarni and O. Zeitouni, “A general classification rule for probability measures,” Ann. Statist. 23, 1393–1407 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  30. L. Le Cam, “Convergence of estimates under dimensionality restrictions,” Ann. Statist., 1, 38–53 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  31. L. Le Cam and L. Schwartz, “A necessary and sufficient conditions for the existence of consistent estimates,” Ann. Math. Statist., 31, 140–150 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  32. E. L. Lehmann and J. P. Romano, Testing Statistical Hypothesis, Springer-Verlag, New York (2005).

    MATH  Google Scholar 

  33. A. B. Nobel, “Hypothesis testing for families of ergodic processes,” Bernoulli, 12, 251–269 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  34. L. Schwartz, “On Bayes procedures,” Z. Wahrsch. Verw. Gebiete, 4, 10–26 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  35. J. Pfanzagl, “On the existence of consistent estimates and tests,” Z.Wahrsch.Verw. Gebiete, 10, 43–62 (1968).

  36. A. Shapiro, “On concepts of directional differentiability,” J. Optimization Theory and Appl., 66, 477–487 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  37. A. W. van der Vaart, Asymptotic Statistics, Cambridge Univ. Press, Cambridge (1998).

  38. K. Yosida, Functional Analysis, Springer, Berlin (1968).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ermakov.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 442, 2015, pp. 48–74.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermakov, M. On Consistent Hypothesis Testing. J Math Sci 225, 751–769 (2017). https://doi.org/10.1007/s10958-017-3491-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-017-3491-4

Navigation