Journal of Mathematical Sciences

, Volume 224, Issue 5, pp 699–708 | Cite as

Spherical Transformation of Generalized Poisson Shift and Properties of Weighted Lebesgue Classes of Functions

  • L. N. LyakhovEmail author
  • S. A. Roshchupkin
  • E. L. Sanina

We obtain a formula for the spherical transformation of generalized shift of a function depending on multiple-axial spherical symmetry. This formula shows that the generalized shift order depends on the dimension of the spherically symmetric part of the Euclidean space. The formula can be used for reducing some problems in weighted function spaces to the case of function spaces without weight. For an example we prove the global continuity with respect to shift and show that functions of class \( {C_{ev}^{\infty}}_{,0} \) are dense in the weighted Lebesgue classes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. N. Lyakhov, B-Hypersingular Integrals and Their Applications to Description of Kipriyanov Spaces of Fractional B-Smoothness and to Integral Equations with B-Potential Kernels [in Russian], LGPU Press, Lipetsk (2007).Google Scholar
  2. 2.
    B. M. Levitan, “Expansion in Fourier series and integrals with Bessel functions” [in Russian], Usp. Mat. Nauk 6, No. 2, 102-143 (1951).Google Scholar
  3. 3.
    L. N. Lyakhov, “The construction of Dirichlet and de la Vall´ee–Poussin–Nikol’skii kernels for j-Bessel Fourier integrals,” Trans. Mosc. Math. Soc. 2015, 55-69 (2015).CrossRefzbMATHGoogle Scholar
  4. 4.
    I. A. Kipriyanov, “Fourier-Bessel transforms and imbedding theorems for weight classes,” Proc. Steklov Inst. Math. 89, 149-246 (1967).MathSciNetzbMATHGoogle Scholar
  5. 5.
    I. A. Kipriyanov and M. I. Klyuchantsev, “Singular integrals generated by a general translation operator. II” Sib. Math. J. 11, 787-804 (1971).CrossRefzbMATHGoogle Scholar
  6. 6.
    I. A. Kipriyanov and N. A. Kashchenko, “On an averaging operator connected with a generalized shift,” Sov. Math., Dokl. 15, 1235-1237 (1974).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • L. N. Lyakhov
    • 1
    Email author
  • S. A. Roshchupkin
    • 2
  • E. L. Sanina
    • 1
  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.I. A. Bunin Elets State UniversityEletsRussia

Personalised recommendations