Skip to main content
Log in

Asymptotic Approximations of the Solution to a Boundary Value Problem in a Thin Aneurysm Type Domain

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 18 September 2017

This article has been updated

We consider a nonuniform Neumann boundary value problem for the Poisson equation in a thin 3D aneurysm type domain consisting of thin curvilinear cylinders joined through an aneurysm of diameter ϐ(ε). We develop a rigorous procedure for constructing a complete asymptotic expansion of the solution as ε → 0. We prove energy and uniform pointwise estimates, which allows us to observe the impact of the aneurysm. Bibliography: 21 titles. Illustrations: 5 figures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 18 September 2017

    An erratum to this article has been published.

References

  1. A. V. Klevtsovskiy and T. A. Mel’nyk, “Asymptotic expansions of the solution of an elliptic boundary value problem for a thin cascade domain,” J. Math. Sci., New York 198, No. 3, 303–327 (2014).

  2. A. V. Klevtsovskiy and T. A. Mel’nyk, “Asymptotic expansion for the solution to a boundary value problem in a thin cascade domain with a local joint,” Asymptotic Anal. 97, No. 3-4, 265–290 (2016).

  3. O. Evju, K. Valen-Sendstad. and K. A. Mardal, “A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions,” J. Biomechanics 46, No. 16, 2802–2808 (2013).

  4. G. P. Panasenko, “Method of asymptotic partial decomposition of domain,” Math. Models Methods Appl. Sci. 8, No. 1, 139–156 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  5. G. P. Panasenko, Multi-Scale Modelling for Structures and Composites, Springer, Dordrecht (2005).

    MATH  Google Scholar 

  6. G. Panasenko, “Method of asymptotic partial domain decomposition for non-steady problems: wave equation on a thin structure,” In: Analytic Methods in Interdisciplinary Applications. Plenary Lectures given at the 9th ISAAC Congress, Poland, August, 2013, Springer Proc. Math. Stat. 116, Springer, Berlin (2015).

  7. G. Panasenko and K. Pileckas, “Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure. I. The case without boundary-layer in time,” Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 122, 125–168 (2015).

  8. G. Panasenko and K. Pileckas, “Asymptotic analysis of the non-steady Navier-Stokes equations in a tube structure. II. General case,” Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 125, 582–607 (2015).

  9. G. Cardone, L. Carraro, R. Fares, and G. P. Panasenko, “Asymptotic analysis of the steady Stokes equation with randomly perturbed viscosity in a thin tube structure,” J. Math. Sci., New York 176, No. 6, 797–817 (2011).

  10. A. Gaudiello, G. P. Panasenko, and A. Piatnitski, “Asymptotic analysis and domain decomposition for a biharmonic problem in a thin multi-structure,” Commun. Contemp. Math. 18, No. 5, Article ID 1550057 (2016).

  11. G. Cardone, A. Corbo-Esposito, and G. Panasenko, “Asymptotic partial decomposition for diffusion with sorption in thin structures,” Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 65, No. 1, 79–106 (2006).

  12. G. Cardone, G. P. Panasenko, and Y. Sirakov, “Asymptotic analysis and numerical modeling of mass transport in tubular structures,” Math. Models Methods Appl. Sci. 20, No. 3, 397–421 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  13. S. A. Nazarov and A. S. Slutskii, “Asymptotic analysis of an arbitrary spatial system of thin rods,” Translations. Series 2. Am. Math. Soc. 214, 59–107 (2005).

  14. S. A. Nazarov and A. S. Slutskii, “Arbitrary plane systems of anisotropic beams,” Proc. Steklov Inst. Math.+ 236, 222–249 (2002).

  15. N. S. Bakhvalov and G. P. Panasenko, Homogenization: Averaging Processes in Periodic Media. Mathematical Problems in the Mechanics of Composite Materials, Kluwer Acad. Publ., Dordrecht etc. (1989).

  16. A. M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Am. Math. Soc., Providence, RI (1992).

  17. V. A. Kondratiev and O. A. Oleinik, “Boundary value problems for partial differential equations in non-smooth domains,” Russian Math. Surv. 38, No. 2, 1–86 (1983).

    Article  Google Scholar 

  18. E. M. Landis and G. P. Panasenko, “A variant of a theorem of Phragmen-Lindelof type for elliptic equations with coefficients that are periodic in all variables but one” [in Russian], Tr. Semin. Im. I. G. Petrovskogo 5, 105–136 (1979).

    Google Scholar 

  19. S. A. Nazarov and B. A. Plamenevskii, Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter de Gruyter, Berlin (1994).

    Book  Google Scholar 

  20. S. A. Nazarov, “Junctions of singularly degenerating domains with different limit dimensions,” J. Math. Sci., New York 80, No. 5, 1989–2034 (1996).

  21. T. A. Mel’nyk, “Homogenization of the Poisson equation in a thick periodic junction,” Z. Anal. Anwend. 18, No. 4, 953–975 (1999).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Problemy Matematicheskogo Analiza 88, March 2017, pp. 59-81.

An erratum to this article is available at https://doi.org/10.1007/s10958-017-3547-5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klevtsovskiy, A.V., Mel’nyk, T.A. Asymptotic Approximations of the Solution to a Boundary Value Problem in a Thin Aneurysm Type Domain. J Math Sci 224, 667–693 (2017). https://doi.org/10.1007/s10958-017-3443-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-017-3443-z

Navigation