Skip to main content
Log in

An Alternative Approach Towards the Higher Order Denoising of Images. Analytical Aspects

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Theoretical aspects of a variational model for the denoising of images which can be interpreted as a substitute for a higher order approach, are investigated. In this model, the smoothness term that usually involves the highest derivatives is replaced by a mixed expression for a second unknown function in which only derivatives of lower order occur. The main results concern the existence and uniqueness as well as the regularity properties of the solutions to this variational problem. They are established under various assumptions imposed on the growth rates of the different parts of the energy functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Acar and C. R. Vogel, “Analysis of bounded variation penalty methods for ill-posed problems,” Inverse Problems, 10, 1217–1229 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  2. R. A. Adams, Sobolev Spaces, Academic Press, San Diego (1975).

    MATH  Google Scholar 

  3. L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Science Publications, Clarendon, Oxford (2000).

    MATH  Google Scholar 

  4. G. Aubert and L. Vese, “A variational method in image recovery,” SIAM J. Numer. Anal., 34, No. 5, 1948–1979 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, Springer, New York (2006).

    MATH  Google Scholar 

  6. P. N. Belhumeur, “A binocular stereo algorithm for reconstructing sloping, creased, and broken surfaces in the presence of half-occlusion,” in: Proc. Fourth International Conference on Computer Vision (1993), pp. 431–438.

  7. M. Bildhauer, “Convex variational problems: linear, nearly linear and anisotropic growth conditions,” Lect. Notes Math., 1818 (2003).

  8. M. Bildhauer and M. Fuchs, “Two-dimensional anisotropic variational problems,” Calc. Variations, 16, 177–186 (2003).

    MathSciNet  MATH  Google Scholar 

  9. M. Bildhauer and M. Fuchs, “A variational approach to the denoising of images based on different variants of the TV-regularization,” Appl. Math. Optim., 66, No. 3, 331–361 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Bildhauer and M. Fuchs, “On some pertubations of the total variation image inpainting method. Part I: regularity theory,” J. Math. Sci., 202, No. 2, 154–169 (2013).

    Article  MATH  Google Scholar 

  11. M. Bildhauer, M. Fuchs, and C. Tietz, “C 1-interior regularity for minimizers of a class of variational problems related to image inpainting,” Algebra Analiz, 27, No. 3, 51–65 (2015).

    MathSciNet  Google Scholar 

  12. M. Bildhauer, M. Fuchs, and X. Zhong, “A lemma on the higher integrability of functions with applications to the regularity theory of two dimensional generalized Newtonian fluids,” Manus. Math., 116, No. 2, 135–156 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Blomgren, T. F. Chan, P. Mulet, L. Vese, and W. L. Wan, “Variational PDE models and methods for image processing,” in: Res. Notes Math. (2000), pp. 43–67.

  14. K. Bredies, K. Kunisch, and T. Pock, “Total generalized variation,” SIAM J. Imaging Sci., 3, 492–526 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  15. K. Bredies, K. Kunisch, and T. Valkonen, “Properties of L 1-TVG2: The one-dimensional case,” J. Math. Analysis Appl., 398, 438–454 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  16. K. Bredies and T. Valkonen, “Inverse problems with second-order total generalized variation constraints,” in: Proc. 9th International Conference on Sampling Theory and Applications, Singapore (2011).

  17. C. Brito-Loeza and K. Chen, “On high-order denoising models and fast algorithms for vector-valued images,” IEEE Trans. Image Processing, 19, 1518–1526 (2010).

    Article  MathSciNet  Google Scholar 

  18. M. Burger, K. Papafitsoros, E. Papoutsellis, and C.-B. Schönlieb, “Infimal convolution regularisation functionals of BV and L p spaces. Part I: The finite p case,” arXiv:1504.01956 [math.NA], 1–32 (2015).

  19. M. Burger, K. Papafitsoros, E. Papoutsellis, and C.-B. Schönlieb, “Infimal convolution regularisation functionals of BV and L p spaces. The case p = ,” arXiv:1510.09032 [math.NA], 1–10 (2015).

  20. V. Caselles, A. Chambolle, and M. Novaga, “Regularity for solutions of the total variation denoising problem,” Rev. Mat. Iberoam., 27, 233–252 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Chambolle and P.-L. Lions, “Image recovery via total variation minimization and related problems,” Numer. Math., 76, 167–188 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  22. T. F. Chan, S. Esedoglu, and F. E. Park, “A fourth order dual method for staircase reduction in texture extraction and image restoration problems,” Technical Report CAM-05-28, University of California at Los Angeles (2005).

  23. T. Chan and J. Shen, Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods, SIAM, Philadelphia (2005).

  24. Y. Chen, S. Levine, and M. Rao, “Variable exponent, linear growth functionals in image restoration,” SIAM J. Appl. Math., 66, 1383–1406 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  25. E. Di Benedetto, “C 1+α local regularity of weak solutions of degenerate elliptic equations,” Nonlinear Anal., 7, 827–850 (1983).

    Article  MathSciNet  Google Scholar 

  26. S. Didas, J. Weickert and B. Burgeth, “Properties of higher order nonlinear diffusion filtering,” J. Math. Imaging Vision, 35, 208–226 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Ferstl, C. Reinbacher, R. Ranftl, M. Rüther, and H. Bischof, “Image guided depth up-sampling using anisotropic total generalized variation,” in: Proc. International Conference on Computer Vision, Sydney, Australia (2013), pp. 993–1000.

  28. J. Frehse, “Two dimensional variational problems with thin obstacles,” Math. Z., 143, 279–288 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Frehse and G. Seregin, “Regularity for solutions of variational problems in the deformation theory of plasticity with logarithmic hardening,” Transl. AMS, 193, 127–152 (1999).

    Google Scholar 

  30. M. Fuchs, “Computable upper bounds for the constants in Poincarè-type inequalities for fields of bounded deformation,” Math. Meth. Appl. Sci., 34, No. 15, 1920–1932 (2011).

    Article  MATH  Google Scholar 

  31. M. Fuchs and S. Repin, “A posteriori error estimates for the approximations of the stresses in the Hencky plasticity problem,” Numer. Funct. Anal. Optim., 32, No. 6, 610–640 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Fuchs and G. Seregin, “Variational methods for problems from plasticity theory and for generalized Newtonian fluids,” Lect. Notes Math., 1749 (2000).

  33. E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Basel (1984).

    Book  MATH  Google Scholar 

  34. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, Berlin (1989).

    MATH  Google Scholar 

  35. J. B. Greer and A. L. Bertozzi, “Traveling wave solutions of fourth order PDE’s for image processing,” SIAM J. Math. Anal., 36 38–68, (2004).

    Article  MathSciNet  MATH  Google Scholar 

  36. B. M. ter Haar Romeny (ed.), Geometry-driven Diffusion in Computer Vision, Kluwer, Dordrecht (1994).

  37. D. Hafner, C. Schroers, and J. Weickert, “Introducing maximal anisotropy into second order coupling models,” in: Lect. Notes Comp. Sci., Springer, Berlin (2015), pp. 79–90.

  38. A. Hewer, J. Weickert, T. Scheffer, H. Seibert, and S. Diebels, “Lagrangian strain tensor computation with higher order and variational models,” in: Proc. 24th British Machine Vision Conference, BMVA Press, Bristol (2013).

  39. B. K. P. Horn, “Height and gradient from shading,” Intern. J. Comput. Vision, 5, No. 1, 37–75 (1990).

    Article  Google Scholar 

  40. B. Kawohl, “Variational versus PDE-based approaches in mathematical image processing,” CRM Proc. Lect. Notes, 44, 113–126 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  41. O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and Quasilinear Elliptic Equations, Nauka, Moskow (1964).

    MATH  Google Scholar 

  42. M. Lysaker, A. Lundervold, and X.-C. Tai, “Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time,” IEEE Trans. Image Processing, 12, 1579-1590 (2003).

    Article  MATH  Google Scholar 

  43. C. B. Morrey Jr., Multiple Integrals in the Calculus of Variations. Reprint of the 1966 Edition, Springer-Verlag, Berlin (2008).

  44. P. P. Mosolov and V. P. Mjasnikov, “On well-posedness of boundary value problems in the mechanics of continuous media,” Mat. Sb., 88 (130), 256–284 (1972).

    MathSciNet  Google Scholar 

  45. K. Papafitsoros and K. Bredies, “A study of the one dimensional total generalised variation regularisation problem,” Inverse Probl. Imag., 9, 511–550 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  46. P. Perona and J. Malik, “Scale space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intel., 12, 629–639 (1990).

    Article  Google Scholar 

  47. L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D, 60, 259–268 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  48. O. Scherzer, “Denoising with higher order derivatives of bounded variation and an application to parameter estimation,” Computing, 60, 1–28 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  49. S. Setzer, G. Steidl, and T. Teuber, “Infimal convolution regularizations with discrete 1-type functionals,” Comm. Math. Sci., 9, 797–827 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  50. G. Strang and R. Temam, “Functions of bounded deformation,” Arch. Rat. Mech. Anal., 75, 7–21 (1981).

    MathSciNet  MATH  Google Scholar 

  51. P. M. Suquet, “Sur une nouveau cadre fonctionnel pour les équations de la plasticité,” C. R. A. S. Paris. Ser A, 286, 1129–1132 (1978).

    MATH  Google Scholar 

  52. P. M. Suquet, “Un espace fonctionnel pour leséquations de la plasticité,” Ann. Fac. Sci. Toulouse, Ser. 5, 1, 77–87 (1979).

  53. P. Tolksdorf, “Everywhere-regularity for some quasilinear systems with a lack of ellipticity,” Ann. Mat. Pura Appl., 134, 241–266 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  54. L. Vese, “A study in the BV space of a denoising-deblurring variational problem,” Appl. Math. Optim., 44, 131–161 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  55. J. Weickert, Anisotropic Diffusion in Image Processing, Teubner, Stuttgart (1998).

    MATH  Google Scholar 

  56. Y.-L. You and M. Kaveh, “Fourth-order partial differential equations for noise removal,” IEEE Trans. Image Process., 9, 1723–1730 (2000).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bildhauer.

Additional information

Dedicated to Gregory A. Seregin on the occasion of his 65th birthday

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 444, 2016, pp. 47–88.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bildhauer, M., Fuchs, M. & Weickert, J. An Alternative Approach Towards the Higher Order Denoising of Images. Analytical Aspects. J Math Sci 224, 414–441 (2017). https://doi.org/10.1007/s10958-017-3425-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-017-3425-1

Navigation