Skip to main content
Log in

On Local Combinatorial Formulas for Chern Classes of a Triangulated Circle Bundle

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

A principal circle bundle over a PL polyhedron can be triangulated and thus obtains combinatorics. The triangulation is assembled from triangulated circle bundles over simplices. To every triangulated circle bundle over a simplex we associate a necklace (in the combinatorial sense). We express rational local formulas for all powers of the first Chern class in terms of expectations of the parities of the associated necklaces. This rational parity is a combinatorial isomorphism invariant of a triangulated circle bundle over a simplex, measuring the mixing by the triangulation of the circular graphs over vertices of the simplex. The goal of this note is to sketch the logic of deducing these formulas from Kontsevitch’s cyclic invariant connection form on metric polygons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-L. Brylinski, Loop Spaces, Characteristic Classes and Geometric Quantization, reprint of the 1993 edition, Birkhäuser Basel (2008).

  2. S. Chern, “Circle bundles,” in: J. Palis and M. do Carmo (eds.), Geometry and Topology, Lecture Notes Math., Vol. 597, Springer, Berlin–Heidelberg (1977), pp. 114–131.

  3. M. M. Cohen, “Simplicial structures and transverse cellularity,” Ann. Math. (2), 85, 218–245 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Duzhin and D. Pasechnik, “Automorphisms of necklaces and sandpile groups,” arXiv:1304.2563 (2013).

  5. J. L. Dupont, “Simplicial De Rham cohomology and characteristic classes of flat bundles,” Topology, 15, 233–245 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. A. Gaĭfullin, “Computation of characteristic classes of a manifold from its triangulation,” Uspekhi Mat. Nauk, 60, No. 4(364), 37–66 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. M. Gabrielov, I. M. Gelfand, and M. V. Losik, “Combinatorial calculus of characteristic classes,” Funct. Anal. Appl., 9, 186–202 (1976).

    Article  MATH  Google Scholar 

  8. I. M. Gelfand and R. D. MacPherson, “A combinatorial formula for the Pontrjagin classes,” Bull. Amer. Math. Soc. New Ser., 26, No. 2, 304–309 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  9. R. M. Goresky, “Triangulation of stratified objects,” Proc. Amer. Math. Soc., 72, 193–200 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Hatcher, Algebraic Topology, Cambridge Univ. Press (2001).

  11. S. Halperin and D. Toledo, “Stiefel–Whitney homology classes,” Ann. Math. (2), 96, 511–525 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  12. K. Igusa, Higher Franz–Reidemeister Torsion, Amer. Math. Soc., Providence, Rhode Island; International Press, Somerville, Massachusetts (2002).

  13. K. Igusa, “Combinatorial Miller–Morita–Mumford classes and Witten cycles,” Algebr. Geom. Topol., 4, 473–520 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Igusa and J. Klein, “The Borel regulator map on pictures. II: An example from Morse theory,” K-Theory, 7, No. 3, 225–267 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Ishikawa and M. Wakayama, “Minor summation formula of Pfaffians,” Linear Multilinear Algebra, 39, No. 3, 285–305 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Jungerman and G. Ringel, “Minimal triangulations on orientable surfaces,” Acta Math., 145, 121–154 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. É. Kazarian, “Relative Morse theory of one-dimensional bundles and cyclic homology,” Funct. Anal. Appl., 31, No. 1, 16–24 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  18. M. É. Kazarian, “The Chern–Euler number of circle bundle via singularity theory,” Math. Scand., 82, No. 2, 207–236 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Kontsevich, “Intersection theory on the moduli space of curves and the matrix Airy function,” Comm. Math. Phys., 147, No. 1, 1–23 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Kozlov, Combinatorial Algebraic Topology, Springer, Berlin (2008).

    Book  MATH  Google Scholar 

  21. J.-L. Loday, Cyclic Homology, Springer-Verlag, Berlin (1998).

    Book  MATH  Google Scholar 

  22. J. Lurie, “Algebraic K-Theory and Manifold Topology,” lecture course, 2014; http://www.math.harvard.edu/~lurie/281.html.

  23. C. Manolescu, “Pin(2)-equivariant Seiberg–Witten Floer homology and the triangulation conjecture,” arXiv:1303.2354 (2014).

  24. K. V. Madahar and K. S. Sarkaria, “A minimal triangulation of the Hopf map and its application,” Geom. Dedicata, 82, Nos. 1–3, 105–114 (2000).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Mnev.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 448, 2016, pp. 201–235.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mnev, N., Sharygin, G. On Local Combinatorial Formulas for Chern Classes of a Triangulated Circle Bundle. J Math Sci 224, 304–327 (2017). https://doi.org/10.1007/s10958-017-3416-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-017-3416-2

Navigation