Skip to main content
Log in

On the Distribution of Points with Algebraically Conjugate Coordinates in a Neighborhood of Smooth Curves

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Let φ : ℝ → ℝ be a continuously differentiable function on a finite interval J ⊂ ℝ, and let α = (α1, α2) be a point with algebraically conjugate coordinates such that the minimal polynomial P of α1, α2 is of degree ≤ n and height ≤ Q. Denote by \( {M}_{\varphi}^n\left(Q,\gamma, J\right) \) the set of points α such that |φ1) − α2| ≤  c 1 Q −γ. We show that for 0 < γ < 1 and any sufficiently large Q there exist positive values c2 < c3, where ci = ci(n), i = 1, 2, that are independent of Q and such that \( {c}_2\cdot {Q}^{n+1-\upgamma}<\#{M}_{\varphi}^n\left(Q,\upgamma, J\right)<{c}_3\cdot {Q}^{n+1-\upgamma}. \) Bibliography: 17 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Beresnevich, D. Dickinson, and S. Velani, “Diophantine approximation on planar curves and the distribution of rational points (with an appendix “Sums of two squares near perfect squares” by R. C. Vaughan),” Ann. Math., 166, No. 2, 367–426 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  2. V. I. Bernik, “A metric theorem on the simultaneous approximation of zero by values of integer polynomials,” Izv. Akad. Nauk SSSR Ser. Mat., 44, No. 1, 24–45 (1980).

    MathSciNet  MATH  Google Scholar 

  3. V. I. Bernik, “Application of the Hausdorff dimension in the theory of Diophantine approximations,” Acta Arith., 42, No. 3, 219–253 (1983).

    MathSciNet  MATH  Google Scholar 

  4. V. I. Bernik and F. Gӧtze, “Distribution of real algebraic numbers of arbitrary degree in short intervals,” Izv. Math., 79, No. 1, 18–39 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  5. V. Bernik, F. Gӧtze, and O. Kukso, “On algebraic points in the plane near smooth curves,” Lithuanian Math. J., 54, No. 3, 231–251 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. Bugeaud, Approximation by Algebraic Numbers, Cambridge Univ. Press, Cambridge (2004).

    Book  MATH  Google Scholar 

  7. M. N. Huxley, Area, Lattice Points, and Exponential Sums, Oxford Univ. Press, New York (1996).

    MATH  Google Scholar 

  8. V. G. Sprindzuk, Mahler’s Problem in Metric Number Theory, Amer. Math. Soc., Providence, Rhode Island (1969).

  9. W. M. Schmidt, Diophantine Approximation, Lect. Notes Math., 785, Springer, Berlin (1980).

  10. N. I. Fel’dman, “The approximation of certain transcendental numbers. I. Approximation of logarithms of algebraic numbers,” Izv. Akad. Nauk SSSR, Ser. Mat., 15, No. 1, 53–74 (1951).

  11. K. Mahler, “An inequality for the discriminant of a polynomial,” Michigan Math. J., 11, 257–262 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  12. J. F. Koksma, “Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen,” Monatsh. Math. Physik, 48, 176–189 (1939).

    Article  MATH  Google Scholar 

  13. B. L. van der Waerden, Algebra, Springer-Verlag, Berlin–Heidelberg (1971).

    MATH  Google Scholar 

  14. R. C. Vaughan and S. Velani, “Diophantine approximation on planar curves: the convergence theory,” Invent. Math., 166, No. 1, 103–124 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  15. V. I. Bernik and M. M. Dodson, Metric Diophantine Approximation on Manifolds, Cambridge Univ. Press, Cambridge (1999).

    Book  MATH  Google Scholar 

  16. N. A. Pereverzeva, “The distribution of vectors with algebraic coordinates in ℝ2,” Vestsi Akad. Navuk BSSR, Ser. Fiz.-Mat. Navuk, 4, 114–116, 128 (1987).

  17. V. Bernik, F. Gӧtze, and A. Gusakova, “On points with algebraically conjugate coordinates close to smooth curves,” Moscow J. Combin. Number Theory, 6, Nos. 2–3, 56–101 [172–217] (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Bernik.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 448, 2016, pp. 14–47.

Supported by SFB-701, Bielefeld University (Germany).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernik, V., Gӧtze, F. & Gusakova, A. On the Distribution of Points with Algebraically Conjugate Coordinates in a Neighborhood of Smooth Curves. J Math Sci 224, 176–198 (2017). https://doi.org/10.1007/s10958-017-3404-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-017-3404-6

Navigation